收藏 分享(赏)

《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc

上传人:高**** 文档编号:675965 上传时间:2024-05-30 格式:DOC 页数:14 大小:869KB
下载 相关 举报
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第1页
第1页 / 共14页
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第2页
第2页 / 共14页
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第3页
第3页 / 共14页
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第4页
第4页 / 共14页
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第5页
第5页 / 共14页
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第6页
第6页 / 共14页
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第7页
第7页 / 共14页
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第8页
第8页 / 共14页
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第9页
第9页 / 共14页
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第10页
第10页 / 共14页
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第11页
第11页 / 共14页
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第12页
第12页 / 共14页
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第13页
第13页 / 共14页
《解析》天津市东丽区2020-2021学年高一上学期期末考试数学试卷 WORD版含解析.doc_第14页
第14页 / 共14页
亲,该文档总共14页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家东丽区2020-2021学年度第一学期高一数学期末质量监测第I卷(选择题共45分)一选择题(本大题共9小题,每小题5分,共45分每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集,集合,则( )A. B. C. D. 【答案】B【解析】【分析】根据,利用并集运算得到,然后再利用补集运算求解.【详解】,又,.故选:B2. “”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:由不等式的性质知“”是真命题,但反过来,若,不能得出,如,但,因此选A.考点:充分必要条件.3. 下列幂函

2、数在区间内单调递减的是( )A. B. C. D. 【答案】D【解析】【分析】由幂函数的知识可直接选出答案.【详解】、在区间内单调递增,在区间内单调递减故选:D4. 设,则a,b,c大小关系正确的是( )A. B. C. D. 【答案】A【解析】【分析】利用指数函数、对数函数的单调性即可求解.【详解】,.所以.故选:A5. 若,则( )A. B. C. D. 【答案】B【解析】【分析】利用正切的二倍角公式算出答案即可.【详解】故选:B6. 当a1时,在同一坐标系中,函数yax与ylogax的图象为( )A B. C. D. 【答案】C【解析】【分析】根据指数函数和对数函数的图像,即可容易判断.

3、【详解】a1,01,yax是减函数,ylogax是增函数,故选:C.【点睛】本题考查指数函数和对数函数的单调性,属基础题.7. 已知是第一象限角,若,那么是( )A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角【答案】C【解析】【分析】由是第一象限角,知在第一象限或在第三象限,再由,知,由此能判断出所在象限【详解】是第一象限角,.当是偶数时,设,则,此时为第一象限角;当是奇数时,设,则,此时为第三象限角.综上所述,为第一象限角或第三象限角,为第三象限角故选:C8. 已知函数给出下列结论:的最小正周期为;是最大值;把函数的图象上所有点向左平移个单位长度,可得到函数的图象其中所有正

4、确结论的序号是( )A. B. C. D. 【答案】B【解析】【分析】对所给选项结合正弦型函数的性质逐一判断即可.【详解】因为,所以周期,故正确;,故不正确;将函数的图象上所有点向左平移个单位长度,得到的图象,故正确.故选:B【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.9. 下列结论正确的是( )A. B. C. D. 【答案】D【解析】【分析】利用正弦函数的单调性可判断AD选项的正误;利用正切函数的单调性可判断C选项的正误;利用余弦函数的单调性可判断B选项的正误.【详解】对于A选项,因为正弦函数在上单调递增,且,则,A选项错误;对于

5、B选项,因为余弦函数在上为减函数,则,即,B选项错误;对于C选项,当时,正切函数单调递增,因为,所以,C选项错误;对于D选项,因为正弦函数在上单调递增,因为,所以,D选项正确.故选:D.【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个:(1)判断各个数值所在的区间;(2)利用函数的单调性直接解答.第II卷(非选择题共75分)二填空题(每题5分,共30分)10. 命题,的否定形式为_【答案】【解析】【分析】根据特称命题的否定是全称命题即可得出答案.【详解】命题,的否定形式为: ,故答案为:11. 设,在_时y的最小值等于_【答案】 (1). (2). 【解析】【分析】由可得,利用基本不

6、等式可求最值,当且仅当时可求出此时的值.【详解】因为,所以,当且仅当即时等号成立,所以在时y的最小值等于,故答案为:; .【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.12. 函数的定义域是_,最小正周期是_【答案】 (1). (2). 【解析】【分析】解出不等式可得定

7、义域,周期可直接求出.【详解】由解得所以定义域是最小正周期是故答案为:;13. 计算:_【答案】【解析】【分析】利用对数、根式的运算性质计算可得结果.【详解】.故答案为:.14. 计算:_.【答案】4【解析】【分析】【详解】15. 已知函数,方程有两个实数解,则的范围是_【答案】【解析】【分析】由题意可知,直线与函数的图象有两个交点,数形结合可得出实数的取值范围.【详解】由题意可知,直线与函数的图象有两个交点,作出直线与函数的图象如下图所示:由图象可知,当或时,直线与函数的图象有两个交点.因此,实数的取值范围是.故答案为:.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的

8、方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三解答题(共5道大题,共45分)16. 已知集合,(1)求集合A、B;(2)求【答案】(1);(2)【解析】【分析】(1)利用对数函数和指数函数的知识解出集合A、B中的不等式即可;(2)首先求出,然后可得答案.【详解】(1)时,时,所以,即(2)所以17. 已知(1)求值:;(2)求值:【答案】(1);(2)【解析】【分析】(1)利用诱导公式

9、化简,再利用齐次式即可求解.(2)利用诱导公式以及两角和的正切公式即可求解.【详解】(1),原式=.(2).18. 已知函数(1)当,解关于x的不等式;(2)设函数,若的最小值为2,求的最大值【答案】(1);(2)【解析】【分析】(1)根据一元二次不等式的解法求解即可;(2)利用均值不等式求出函数最小值解出a,再根据对勾函数的单调性求最大值即可.【详解】(1)或(2) 当且仅当时取等号,即取最小值,解得,在为减函数,为增函数,19. 已知,(1)求证:(2)若为第一象限角,为第四象限角,求的值【答案】(1)证明见解析;(2)【解析】【分析】(1)分别将已知条件展开,两式相减、相加可得,的值,两

10、式相除即可求证;(2)利用同角三角函数的平方关系结合角所在的象限求出、的值,利用即可求解.详解】(1)由题意可得:得得得:,即(2)若为第一象限角,因为为第四象限角,.【点睛】关键点点睛:本题解题的关键是灵活运用同角三角函数基本关系,要证,化切为弦即证,所以想到将已知条件展开,给值求值型的关键是用已知角表示所要求的角,即.20. 已知函数的最大值为1(1)求常数m的值;(2)当时,求函数的单调递增区间【答案】(1);(2),【解析】【分析】(1)利用二倍角公式以及辅助角公式将函数化为,再利用三角函数的性质即可求解.(2)利用正弦函数的性质可得,解不等式即可求解.【详解】(1),(2)设,又,与集合取交集可得.的单调递增区间为,- 14 - 版权所有高考资源网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3