ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:111.50KB ,
资源ID:673700      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-673700-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省大港中学高三数学总复习教案:圆锥曲线方程 双曲线的几何性质 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省大港中学高三数学总复习教案:圆锥曲线方程 双曲线的几何性质 WORD版含解析.doc

1、双曲线的几何性质 一、教学目标(一)知识教学点使学生理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征(二)能力训练点在与椭圆的性质的类比中获得双曲线的性质,从而培养学生分析、归纳、推理等能力(三)学科渗透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决双曲线中的弦、最值等问题二、教材分析1重点:双曲线的几何性质及初步运用(解决办法:引导学生类比椭圆的几何性质得出,至于渐近线引导学生证明)2难点:双曲线的渐近线方程的导出和论证(解决办法:先引导学生观察以原点为中心,2a、2b长为邻边的

2、矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线)3疑点:双曲线的渐近线的证明(解决办法:通过详细讲解)三、活动设计提问、类比、重点讲解、演板、讲解并归纳、小结四、教学过程(一)复习提问引入新课1椭圆有哪些几何性质,是如何探讨的?请一同学回答应为:范围、对称性、顶点、离心率,是从标准方程探讨的2双曲线的两种标准方程是什么?再请一同学回答应为:中心在原点、焦点在x轴上的双曲线的标下面我们类比椭圆的几何性质来研究它的几何性质(二)类比联想得出性质(性质13)引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发、订正并板书)(三)问题之中导出渐近线(性质4)在学习椭圆时,以原

3、点为中心,2a、2b为邻边的矩形,对于估计仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么?下面,我们来证明它:双曲线在第一象限的部分可写成:当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON在其他象限内也可以证明类似的情况现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的

4、双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字 这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精再描几个点,就可以随后画出比较精确的双曲线(四)顺其自然介绍离心率(性质5)由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔这时,教师指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变(五)练习与例题1求双曲线9y2-16x2=144的实半

5、轴长和虚半轴长、焦点坐标、离心率、渐近线方程请一学生演板,其他同学练习,教师巡视,练习毕予以订正由此可知,实半轴长a=4,虚半轴长b=3焦点坐标是(0,-5),(0,5)本题实质上是双曲线的第二定义,要重点讲解并加以归纳小结解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合:化简得:(c2-a2)x2-a2y2=a2(c2-a2)这就是双曲线的标准方程由此例不难归纳出双曲线的第二定义(六)双曲线的第二定义1定义(由学生归纳给出)平面内点M与一定点的距离和它到一条直线的距离的比是常数e=叫做双曲线的准线,常数e是双曲线的离心率2说明(七)小结(由学生课后完成)将双曲线的几何性质按两种标准方程形式列表小结五、布置作业1已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程(1)16x2-9y2=144;(2)16x2-9y2=-1442求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;曲线的方程点到两准线及右焦点的距离作业答案:距离为7六、板书设计

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3