ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:1.30MB ,
资源ID:66596      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-66596-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(四川省仁寿第一中学北校区2019-2020学年高一数学下学期期中试题(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

四川省仁寿第一中学北校区2019-2020学年高一数学下学期期中试题(含解析).doc

1、四川省仁寿第一中学北校区2019-2020学年高一数学下学期期中试题(含解析)第I卷(选择题)一、选择题(本大题共12小题,每小题5分,共计60分)1.在中,点满足,则( )A. B. C. D. 【答案】D【解析】【详解】因为,所以,即;故选D.2.已知是等差数列,是它的前项和,若,则( )A. B. C. D. 【答案】B【解析】【分析】利用等差数列的性质计算【详解】是等差数列,故选B【点睛】本题考查等差数列的性质,即在等差数列中,若(是正整数),则,特别地,则,由此可得前的性质:3.在中,角,的对边分别为,且,则( )A. B. C. D. 【答案】C【解析】【分析】由正弦定理得:,解得

2、,即可求出【详解】由正弦定理得:,解得,故或,当时,当时,.故选C.【点睛】本题考查了利用正弦定理解三角形,考查了计算能力,属于基础题.4.等比数列的前n项和为,若则=( )A 10B. 20C. 20或-10D. -20或1【答案】B【解析】【分析】由等比数列的性质可得,S10,S20S10,S30S20成等比数列,所以(S20S10)2S10(S30S20)可解得答案.【详解】由等比数列的性质可得,S10,S20S10,S30S20成等比数列,且公比为(S20S10)2S10(S30S20)即解得=20或-10由所以=20故选:B.【点睛】本题考查等比数列的前项和的性质,,注意值的取舍,属

3、于中档题.5.在ABC中,A60,且最大边长和最小边长是方程x27x110的两个根,则第三边的长为()A. 2B. 3C. 4D. 5【答案】C【解析】第三边即为a,又,故选C.6.在中,角,的对边分别为,若,则为( )A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰或直角三角形【答案】D【解析】余弦定理得代入原式得解得则形状为等腰或直角三角形,选D.点睛:判断三角形形状的方法化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用这个结论7.等差数列的前项和为,已知,则当取最大值时的值是( )A

4、. 5B. 6C. 7D. 8【答案】B【解析】【分析】根据已知条件,求出数列的通项公式,表示出,等差数列的前项和是不含常数的二次函数,利用二次函数性质求解,要注意;【详解】解:,当时取最大值故选:【点睛】本题主要考查了等差数列的和的最值的求解,由于数列是一类特殊的函数,在有关最值的求解中,要善于利用这一性质进行求解,但要注意为正整数的限制条件8.在等差数列中,若,则的值为A. B. C. D. 【答案】A【解析】【分析】根据等差数列性质化简条件与结论,即得结果.【详解】因为,所以,因此,选A.【点睛】本题考查等差数列性质,考查等价转化求解能力,属中档题.9.一海轮从A处出发,以每小时40海里

5、的速度沿南偏东40的方向直线航行,30分钟后到达B处在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70,在B处观察灯塔,其方向是北偏东65,那么B,C两点间的距离是()A. 10海里B. 10海里C. 20海里D. 20海里【答案】B【解析】根据已知条件可知ABC中,AB20,BAC30,ABC105,所以C45,由正弦定理,有,所以10.故选B.10.已知数列中,且,则的值为( )A. B. C. D. 【答案】A【解析】【分析】由递推关系,结合,可求得,的值,可得数列是一个周期为6的周期数列,进而可求的值【详解】因为,由,得;由,得;由,得;由,得;由,得;由,得由此推理可得数列是一

6、个周期为6的周期数列,所以,故选A【点睛】本题考查由递推关系求数列中的项,考查数列周期的判断,属基础题11.已知点O是内部一点,并且满足,的面积为,的面积为,则( )A. B. C. D. 【答案】D【解析】【分析】利用,确定点O的位置,结合三角形面积公式求解.【详解】因为,所以,所以取的中点,则, .,即为中线的中点,如图所示,则的面积为,的面积为,,所以.故选:D.【点睛】本题主要考查平面向量的应用,利用向量的线性运算及共线定理确定点的位置是求解本题的关键.12.设数列的前n项和为,令,称为数列,的“理想数”,已知数列,的“理想数”为2004,那么数列2,的“理想数”为( )A. 2002

7、B. 2004C. 2006D. 2008【答案】A【解析】【分析】由公式得,数列,的“理想数”为,从而得;所以数列2,的“理想数”为:,得出答案【详解】解:根据题意得,数列,的“理想数”为,即;数列2,的“理想数”为:故选:A【点睛】本题考查了数列前项和的公式,即的灵活应用,解题时要弄清题意,灵活运用所学知识,解出正确答案属于中档题第II卷(非选择题)二、填空题(本大题共4小题,每小题5分,共计20分)13.已知,且三点共线,则_【答案】【解析】【分析】由三点共线,得,根据向量共线的坐标表示求.【详解】三点共线,.,.故答案为:.【点睛】本题考查向量共线的坐标表示,属于基础题.14.在中,角

8、A,B,C所对的边分别是a,b,c,已知,则的面积为_.【答案】【解析】【分析】由已知条件可得,,根据三角形的面积公式求解即可.【详解】在中,,.故答案为:.【点睛】本题考查三角形的面积公式,考查计算能力,属于基础题.15.已知数列中,为前n项和,则_【答案】【解析】【分析】由得出,的奇数项和偶数项都是公差为2的等差数列,求得,然后利用等差数列前项和公式进行分组求和即可得出结论.【详解】解:由得,的奇数项构成公差为2的等差数列,偶数项也构成公差为2的等差数列,,故答案为:.【点睛】本题主要考查等差数列的定义,通项公式和前项和公式,考查学生的计算能力,属于基础题.16.等比数列的公比为,前项的积

9、为,并且满足,给出下列结论;是中最大的;使得成立的最大的自然数是4018.其中正确结论的序号为_.(将你认为正确的全部填上)【答案】【解析】详解】, 或,如果 ,那么,如果,那么,又应与异号,即 和前面 假设矛盾了, ,又或者 ,,那么应该大于1,又矛盾了,因此,综上所述,故 正确;,故正确;由结论 可知数列从2010项开始小于1,所以 为最大项,故不正确;由结论 可知数列从2010项开始小于1,因为数列从2010项开始小于1,所以当时,成立的最大的自然数, 求得,故正确,故答案为.三、解答题(本题共6道小题,第1题10分,第2题12分,第3题12分,第4题12分,第5题12分,第6题12分,

10、共70分)17.在ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB(1)求角B的大小;(2)若b=3,sinC=2sinA,求a,c的值【答案】(1)B=60(2)【解析】(1)由正弦定理得【考点定位】本题主要考察三角形中的三角函数,由正余弦定理化简求值是真理18.已知数列的前n项和.(1)求数列的通项公式;(2)若,求数列的前n项和.【答案】(1);(2)【解析】【分析】(1)利用与的关系可求出数列的通项公式.(2),利用错位相减法即可求出数列的和.【详解】(1)因为数列的前n项和,当时,两式相减得,当时,满足上式,故.(2),则,两式相减得到:,化简整理得到:.【点

11、睛】本题考查了求数列的通项公式,错位相减法求和,意在考查学生对于数列公式方法的综合应用.19.如图,在矩形中,点E是的中点,点F在边上.(1)若点F是上靠近C的三等分点,试用,表示;(2)若有向量满足,点是上靠近C的四等分点,且,求的值.【答案】(1);(2).【解析】【分析】(1)以向量作为基底向量,结合向量的加法运算,得出;(2)建立直角坐标系,利用坐标运算,得出的值.【详解】(1)(2)以点为坐标原点,建立如下图所示的直角坐标系设则 ,解得【点睛】本题主要考查了用基底表示向量以及已知向量共线求参数,属于中档题.20.六安市某棚户区改造,四边形为拟定拆迁棚户区,测得,千米,千米,工程规划用

12、地近似为图中四边形的外接圆内部区域.()求四边形的外接圆半径;()求该棚户区即四边形的面积的最大值.【答案】() () 【解析】试题分析:()由题得:在,由余弦定理,求得,再由正弦定理,即可求解的值.()由()得,由余弦定理得,进而得到,即可得到结论.试题解析:()由题得:在 所以 ()由()得,由余弦定理得: 即 所以(当且仅当PB=PC时等号成立) 而 故 21.已知数列满足,(1)求数列的通项公式;(2)证明:.【答案】(1);(2)证明见解析.【解析】【分析】(1) ,变形可得,利用累乘法即可求得数列的通项公式;(2)由(1)可知,则利用放缩法可知,再利用裂项相消即可求得结果.【详解】

13、(1)由得,即,即,所以,又满足,所以(2)证明:,.故.【点睛】本题考查累乘法求数列通项公式,考查利用放缩法和裂项相消求和证明数列不等式,考查学生的计算能力与推理能力,属于中档题.22.已知数列的前n项和满足. ,(1)证明数列为等差数列,并求出数列的通项公式.(2)若不等式,对任意恒成立,求的取值范围.【答案】(1)证明见解析,;(2).【解析】【分析】(1)由与关系,得出的递推关系,再用等差数列的定义,证明为等差数列,求出其通项,即可求得的通项公式;(2)不等式,对任意恒成立,分离参数转为对任意恒成立,转为求数列的最大值,即可求出结果;【详解】解:(1)当时,得,当时,两式相减得:,即,又,数列是以2为首项,1为公差的等差数列.(2)由(1)知,即不等式,对任意恒成立,等价于对任意恒成立,记,时,,当时,或时,取最大值为,即, 的取值范围是:.【点睛】本题考查等差数列的证明,数列的通项公式的求法及应用,着重考查学生的运算能力、转化能力和思维能力,注意过程的规范性书写,属中档题

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3