1、高中数学指数函数说课稿-指数函数的定义、图像及性质新课标指出,学生是教学的主体,教师的教学要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这四个方面加以说明。一、教材分析 1、教材的地位和作用 函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和
2、作用,研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。 2、教学的重点和难点 根据这一节课的内容特点以及学生的实际情况,学生对抽象的指数函数及其图象缺乏感性认识。为此,在教学过程中让学生自己去感受指数函数的生成过程以及图象和性质是这一堂课的突破口。因此,指数函数的图像、性质及其运用作为教学重点,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。 二、教学目标分新课标指出教学目标应包括知识目标、能力目标和情感目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程也同时成为学生学会学习,形成正确
3、的价值观的过程。以此为指导我制定了以下的教学目标 1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想以及从特殊到一般等学习数学的方法,增强识图用图的能力。 3、情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,和谐的师生关系,培养学生勇于提问,善于探索发现,善于总结规律的思维品质。 4、多媒体展示工具:电子白板软件工具:几何画板三、教法学法分析 1、教法分析 遵循“教师的主导作用和学生的主体地位相统一的教学规律
4、”,通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。 2、学法分析 本节课所面对的是高中一年级的学生,这个年龄段的学生思维活跃,求知欲强,但在思维习惯上还有待教师引导,本节课从学生原有的知识和能力出发,教师将带领学生创设疑问,通过合作交流、共同探索来寻求解决问题的方法。 教学过程分析 根据新课标的理念,我把整个的教学过程分为六个阶段,即:创设情境,形成概念发现问题,探求新知深入探究,加深理解强化训练,巩固双基小结归纳,拓展深化布置作业,提高升华1、创设情境,形成概念在本节课的开始,我设计了一个游戏情境,我们一起动手演算癌症细胞的分裂情况,
5、观察癌症细胞的个数与天数之间的关系,得出天数x与癌细胞数y的关系式。在学生动手计算的过程中激发学生学习热情和探索新知的欲望。此时教师给出指数函数的定义,即形如y=ax (a0且a1)的函数称为指数函数,定义域为R。教师将引导学生探究为什么定义中规定a0且a1呢?对a的范围的具体分析,有利于学生对指数函数一般形式的掌握,同时为后面研究函数的图象和性质埋下了伏笔。在给出学生定义之后可能会有同学感觉定义的形式十分简单,此时教师给出问题,打破学生对定义的轻视,你能否判断下列函数哪些是指数函数吗?(1)y=2x(2)y=2x+1(3)y=2-x(4)y=xx 学生判断的过程中教师给予适时指导,学生体会哪
6、些是指数函数的过程也是学生头脑中不断完善对定义理解的过程。教师提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,进而得出(1)、(3)是指数函数。通过这一环节使学生对定义有了更进一步的认识。此时教师把问题引向深入,我们要研究一个函数,光有定义是远远不够的,还要对一个函数的图像和性质进行进一步的研究。教师带领学生进入下一个环节发现问题,探求新知。 2、发现问题,探求新知指数函数是学生在学习了函数基本概念和性质以后接触到的第一个具体函数,所以在这部分的安排上我更注重学生思维习惯的养成,即应从哪些方面,那些角度去探索一个具体函数,所以我设置了以下三个问题,(1)怎样得到指数函数的图像?(
7、2)指数函数图像的特点(3)通过图像,你能发现指数函数的那些性质?以这三个问题为载体,带领学生进入本节课的发现问题,探求新知阶段。这也是本节课的重点环节。 (1)函数图像 学生分成四个小组,分别完成y=2x y=3xy=2-x y=3-x图像,通过前面知识的学习,学生可以较快的通过描点法将图像画出,最后教师在电子白板多媒体上,用几何画板将这四个图像给予展示,这样做既避免了学生在画图过程中占用过多时间又让学生体会到了合作交流的乐趣。此时教师组织学生讨论,并引导学生观察图像的特点,得出a1和0A1这两种情况在图像上的特点。在此环节中,学生对具体的函数进行观察归纳,通过合作交流,将具体化为抽象,并感
8、受了对底的分类讨论的思维方式,从而达到了重点的突破。 (2)根据函数图像研究函数性质(1)定义域和值域(2)a1时与0a1时的单调性区别(3)定点问题让学生充分感受以图像为基础研究函数的性质这一重要的数学思想。任务的完成将会使学生体会到很大的成功感,也将学生思考的热情带入高峰,此时教师再次提出问题,底的变化与图像位置之间是否也与存在着联系呢,由此将带领学生进入本节课的第三个环节深入探究,加深理解,这也是本节课所要突破的一个难点。 3、深入探究,加深理解 问题的提出将带领学生进入本节课研究与探索的高潮。学生可能从不同的视角观察图像,从而得出自己发现的规律,但此时教师并不急于给出结论,而是让学生充
9、分经历知识的形成过程,从而形成自己对本节课难点的理解和解决策略,培养学生的直觉和感悟能力。最后教师通过多媒体,让学生更直观的体会指数中图像的变化规律,即(1)在第一象限中,随着底增大图像位置升高;同时引导学生从对称性的角度上观察图像得到(2)底互为倒数的两个函数图像关于y轴对称。在这一环节中,通过教师的指引和学生的积极思考使图像与低的关系自然浮出水面,而非强加给学生,真正实现本节课难点的突破。 通过前面几个环节,学生已基本掌握了本节课指数函数的相关知识,此时我将带领学生体验运用新知识去解决问题的乐趣,进入本节课的下一个环节当堂训练,共同提高。 4、当堂训练,巩固双基 例1:比较下列各题中两值的
10、大小 (1)1.72.5 1.73 (2)0.8-0.10.8-0.3;同底指数幂比较大小构造指数函数,利用函数单调性(3)1.70.3与0.83不同底但可化同底 例2:已知f(x)=(a2-3a+3)a2为指数函数,求a的值例3 指数函数f(x)=(2a-1)x为减函数,求a的范围本例题诣在对知识的逆用,建立学生的函数思想及分类讨论思想。 5、小结归纳,拓展深化 在小结归纳中我将从学生的知识,方法和体验入手,带领学生从以下三个方面进行小结:(1)通过本节课的学习,你学到了那些知识?(2)你又掌握了哪些学习方法?(3)你能将指数函数的学习与实际生活联系起来吗?让学生在小结中明确本节课的学习内容
11、,强化本节课的学习重点,并为后续学习打下基础。所以在这一部分我的设计意图是回顾知识,拓展深化。 6、布置作业,提高升华将作业分为必做题和选作题两个部分,必做题面向全体,注重知识反馈,选作题更注重知识的延伸性和连贯性,可让让有能力的同学去探求。最后我布置两道思考题 (1)今天我们所学的性质是由观察图像得到的,那么这些性质能否通过推理的方法得到呢? (2)目的在于让学生认识到除了通过观察图像,演绎推理也是研究数学常用的思想,将学生思维引领向更高的层次 (3)探究国际象棋问题:国际象棋共有64格,国王要奖赏国际象棋的大臣,大臣说:第一格请奖赏1粒米,第二格请奖赏2粒米,第三格请奖赏4粒米,依次类推,直到64格,请问国王应该答应吗?目的在于让学生体会指数的增长速度之快,同时让学生感受指数的用途,激发学生的兴趣。 7、课后反思:以上六个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,层层递进,学生亲身经历了知识的形成和发展过程,以问题为驱动,使学生对知识的理解逐步深入。而最终的思考题又将激发学生兴趣,带领学生进入对指数函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。在实践中取得较好的教学效果,受到学生们的欢迎。