ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:356.50KB ,
资源ID:6546      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-6546-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((新人教A)高三数学教案全集之4.2弧度制(一).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

(新人教A)高三数学教案全集之4.2弧度制(一).doc

1、课 题:4.2弧度制(一)教学目的:1.理解1弧度的角、弧度制的定义.2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算.3.熟记特殊角的弧度数教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算.教学难点:弧度的概念及其与角度的关系.授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析: 讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联

2、系的、辩证统一的.进一步加强对辩证统一思想的理解.教学过程:一、复习引入:1角的概念的推广“旋转”形成角一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角旋转开始时的射线OA叫做角的始边,旋转终止的射线OB叫做角的终边,射线的端点O叫做角的顶点“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA为始边的角=210,=-150,=660, 2度量角的大小第一种单位制角度制的定义初中几何中研究过角的度量,当时是用度做单位来度量角,1的角是如何定义的?规定周角的作为1的角,我们把用度做单位来度量角的制度叫

3、做角度制,有了它,可以计算弧长,公式为3探究30、60的圆心角,半径r为1,2,3,4,分别计算对应的弧长l,再计算弧长与半径的比结论:圆心角不变,则比值不变,因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度弧度制 二、讲解新课: 1 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制 如下图,依次是1rad , 2rad , 3rad ,rad 探究:平角、周角的弧度数,(平角=p rad、周角=2p rad)正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0角a的弧度数的绝对

4、值 (为弧长,为半径)角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同2. 角度制与弧度制的换算: 360=2p rad 180=p rad 1= 三、讲解范例:例1 把化成弧度解: 例2 把化成度解:注意几点:1度数与弧度数的换算也可借助“计算器”进行; 2今后在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad , sinp表

5、示prad角的正弦; 3一些特殊角的度数与弧度数的对应值应该记住:角度030456090120135150180弧度0/6/4/3/22/33/45/6角度210225240270300315330360弧度7/65/44/33/25/37/411/62 4应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系正角零角负角正实数零负实数 任意角的集合 实数集R例3用弧度制表示:1 终边在轴上的角的集合 2 终边在轴上的角的集合 3 终边在坐标轴上的角的集合解:1 终边在轴上的角的集合 2 终边在轴上的角的集合 3 终边在坐标轴上的角的集合

6、 四、课堂练习:1.下列各对角中终边相同的角是( )A.() B.和C.和 D. 2.若3,则角的终边在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若是第四象限角,则一定在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4.(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 .5.7弧度的角在第 象限,与7弧度角终边相同的最小正角为 .6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .7.求值:.8.已知集合22,B44,求AB.9.现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角.参考答案:1.C 2.C 3.

7、C4.2k2k,kZkk,kZ5.一 72 6. 7.28.AB4或09.五、小结 1弧度制定义 2与弧度制的互化 2.特殊角的弧度数六、课后作业:已知是第二象限角,试求: (1)角所在的象限;(2)角所在的象限;(3)2角所在范围. 解:(1)是第二象限角,+2k+2k,kZ,即+k+k,kZ. 故当k=2m(mZ)时,+2m+2m,因此,角是第一象限角;当k=2m+1(mZ)时,+2m+2m,因此,角是第三象限角. 综上可知,角是第一或第三象限角. (2)同理可求得:+k+k,kZ.当k=3m(mZ)时,,此时,是第一象限角; 当k=3m+1(mZ)时,即+2m,此时,角是第二象限角; 当

8、k=3m+2(mZ)时,,此时,角是第四象限角. 综上可知,角是第一、第二或第四象限角. (3)同理可求得2角所在范围为:+4k22+4k,kZ. 评注:(1)注意某一区间内的角与象限角的区别.象限角是由无数个区间角组成的,例如090这个区间角,只是k=0时第一象限角的一种特殊情况. (2)要会正确运用不等式进行角的表达,同时会以k取不同值,讨论形如=+k(kZ)所表示的角所在象限. (3)对于本例(3),不能说2只是第一、二象限的角,因为2也可为终边在y轴负半轴上的角+4k(kZ),而此角不属于任何象限.七、板书设计(略)八、课后记:课 题:4.2弧度制(一)教学目的:1.理解1弧度的角、弧

9、度制的定义.2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算.3.熟记特殊角的弧度数教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算.教学难点:弧度的概念及其与角度的关系.授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析: 讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解.教学过程

10、:一、复习引入:1角的概念的推广“旋转”形成角一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角旋转开始时的射线OA叫做角的始边,旋转终止的射线OB叫做角的终边,射线的端点O叫做角的顶点“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA为始边的角=210,=-150,=660, 2度量角的大小第一种单位制角度制的定义初中几何中研究过角的度量,当时是用度做单位来度量角,1的角是如何定义的?规定周角的作为1的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为3探究30、60的圆

11、心角,半径r为1,2,3,4,分别计算对应的弧长l,再计算弧长与半径的比结论:圆心角不变,则比值不变,因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度弧度制 二、讲解新课: 1 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制 如下图,依次是1rad , 2rad , 3rad ,rad 探究:平角、周角的弧度数,(平角=p rad、周角=2p rad)正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0角a的弧度数的绝对值 (为弧长,为半径)角度制、弧度制度量角的两种不同的方法

12、,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同2. 角度制与弧度制的换算: 360=2p rad 180=p rad 1= 三、讲解范例:例1 把化成弧度解: 例2 把化成度解:注意几点:1度数与弧度数的换算也可借助“计算器”进行; 2今后在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad , sinp表示prad角的正弦; 3一些特殊角的度数与弧度数的对应值应

13、该记住:角度030456090120135150180弧度0/6/4/3/22/33/45/6角度210225240270300315330360弧度7/65/44/33/25/37/411/62 4应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系正角零角负角正实数零负实数 任意角的集合 实数集R例3用弧度制表示:1 终边在轴上的角的集合 2 终边在轴上的角的集合 3 终边在坐标轴上的角的集合解:1 终边在轴上的角的集合 2 终边在轴上的角的集合 3 终边在坐标轴上的角的集合 四、课堂练习:1.下列各对角中终边相同的角是( )A.(

14、) B.和C.和 D. 2.若3,则角的终边在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若是第四象限角,则一定在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4.(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 .5.7弧度的角在第 象限,与7弧度角终边相同的最小正角为 .6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .7.求值:.8.已知集合22,B44,求AB.9.现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角.参考答案:1.C 2.C 3.C4.2k2k,kZkk,kZ5.一 72 6. 7.28

15、.AB4或09.五、小结 1弧度制定义 2与弧度制的互化 2.特殊角的弧度数六、课后作业:已知是第二象限角,试求: (1)角所在的象限;(2)角所在的象限;(3)2角所在范围. 解:(1)是第二象限角,+2k+2k,kZ,即+k+k,kZ. 故当k=2m(mZ)时,+2m+2m,因此,角是第一象限角;当k=2m+1(mZ)时,+2m+2m,因此,角是第三象限角. 综上可知,角是第一或第三象限角. (2)同理可求得:+k+k,kZ.当k=3m(mZ)时,,此时,是第一象限角; 当k=3m+1(mZ)时,即+2m,此时,角是第二象限角; 当k=3m+2(mZ)时,,此时,角是第四象限角. 综上可知,角是第一、第二或第四象限角. (3)同理可求得2角所在范围为:+4k22+4k,kZ. 评注:(1)注意某一区间内的角与象限角的区别.象限角是由无数个区间角组成的,例如090这个区间角,只是k=0时第一象限角的一种特殊情况. (2)要会正确运用不等式进行角的表达,同时会以k取不同值,讨论形如=+k(kZ)所表示的角所在象限. (3)对于本例(3),不能说2只是第一、二象限的角,因为2也可为终边在y轴负半轴上的角+4k(kZ),而此角不属于任何象限.七、板书设计(略)八、课后记:

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3