1、 1.21任意角的三角函数课前预习学案一、预习目标: 1.了解三角函数的两种定义方法; 2.知道三角函数线的基本做法.二、预习内容: 根据课本本节内容,完成预习目标,完成以下各个概念的填空.三、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观
2、点,正确理解三角函数是以实数为自变量的函数.二、重点、难点重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.三、学习过程(一)复习:1、初中锐角的三角函数_2、在RtABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦、余弦、正切依次为_(二)新课:1三角函数定义在直角坐标系中,设是一个任意角,终边上任意一点(除了原点)的坐标为,它与原点的距离为,那么(1)比值_叫做的正弦,记作_,即_(
3、2)比值_叫做的余弦,记作_,即_(3)比值_叫做的正切,记作_,即_;2三角函数的定义域、值域函 数定 义 域值 域3三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:正弦值对于第一、二象限为_(),对于第三、四象限为_();余弦值对于第一、四象限为_(),对于第二、三象限为_();正切值对于第一、三象限为_(同号),对于第二、四象限为_(异号)4诱导公式 由三角函数的定义,就可知道:_即有:_ _ _5当角的终边上一点的坐标满足_时,有三角函数正弦、余弦、正切值的几何表示三角函数线。 设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点过作轴的垂线,垂足
4、为;过点作单位圆的切线,它与角的终边或其反向延长线交与点.()()()()由四个图看出:当角的终边不在坐标轴上时,有向线段,于是有,_ ,_我们就分别称有向线段为正弦线、余弦线、正切线。(三)例题 例1已知角的终边经过点,求的三个函数制值。变式训练1:已知角的终边过点,求角的正弦、余弦和正切值. 例2求下列各角的三个三角函数值:(1); (2); (3) 变式训练2:求的正弦、余弦和正切值. 例3已知角的终边过点,求的三个三角函数值。 变式训练3: 求函数的值域 例4.利用三角函数线比较下列各组数的大小: 1. 与 2. tan与tan (四)、小结课后练习与提高一、选择题1. 是第二象限角,P(,)为其终边上一点,且,则的值为( )A. B. C. D. 2. 是第二象限角,且,则是( ) A. 第一象限角 B. 第二象限角 C. 第三象限角 D. 第四象限角3、如果那么下列各式中正确的是( )A. B. C. D. 二、填空题4. 已知的终边过(9,)且,则的取值范围是 。5. 函数的定义域为 。6. 的值为 (正数,负数,0,不存在)三、解答题7.已知角的终边上一点P的坐标为()(),且,求参考答案一、选择题:1. A 2 . C 3 D二、填空题4. 5. 6. 负数三、解答题7. 解:由题意,得:解得:,所以