ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:688.74KB ,
资源ID:646726      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-646726-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022-2023学年综合复习人教版九年级数学上册期中测评试题 A卷(含详解).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022-2023学年综合复习人教版九年级数学上册期中测评试题 A卷(含详解).docx

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第

2、秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A第秒B第秒C第秒D第秒2、关于x的方程x24kx2k24的一个解是2,则k值为()A2或4B0或4C2或0D2或23、在下列图形中,既是轴对称图形,又是中心对称图形的是()A等边三角形B直角三角形C正五边形D矩形4、二次函数的顶点坐标为,图象如图所示,有下列四个结论:;,其中结论正确的个数为()A个B个C个D个5、当0x3,函数yx2+4x+5的最大值与最小值分别是()A9,5B8,5C9,8D8,4二、多选题(5小题,每小题4分,共计20分)1、对于抛物线y2(x3)21,下列说法错误的是()A开口向上B对称轴是直线x3C当x3

3、时,y随x的增大而减小D当x3时,函数值有最小值是12、下列关于x的方程的说法正确的是()A一定有两个实数根B可能只有一个实数根C可能无实数根D当时,方程有两个负实数根3、已知关于的方程,下列判断正确的是()A当时,方程有两个正实数根B当时,方程有两个不等实根C当时,方程无解D不论为何值时,方程总有实数根4、二次函数y=ax2+bx+c(a0)的图象如图所示,则下列说法中正确的有()Aabc0B2a+b=0C9a+3b+c0D当1x3时,y0E当x0时,y随x的增大而减小 线 封 密 内 号学级年名姓 线 封 密 外 5、二次函数y=ax2+bx+c(a0)的顶点坐标为(-1,n),其部分图象

4、如图所示下列结论正确的是()ABC若,是抛物线上的两点,则D关于x的方程无实数根第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若函数图像与x轴的两个交点坐标为和,则_2、已知二次函数的图象与x轴的两个交点A,B关于直线x=1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为_3、在平面直角坐标系中,已知抛物线ymx22mxm2(m0)(1)抛物线的顶点坐标为_;(2)点M(x1,y1)、N(x2,y2)(x1x23)是拋物线上的两点,若y1y2,x2x12,则y2的取值范围为_(用含 m的式子表示)4、如图,二次函数yax2+bx+c的图象经过点A

5、(3,0),B(1,0),与y轴交于点C下列结论:abc0;3ac0;当x0时,y随x的增大而增大;对于任意实数m,总有abam2bm其中正确的是 _(填写序号)5、抛物线的开口方向向_四、解答题(5小题,每小题8分,共计40分)1、一个二次函数y=(k1)求k值2、某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m500.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为

6、多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润销售收入总支出)3、今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示: 线 封 密 内 号学级年名姓 线 封 密 外 购票方式甲乙丙可游玩景点和门票价格100元/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原

7、计划购买乙种门票的游客改为购买丙种门票若丙种门票价格下降10元,求景区六月份的门票总收入;问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?4、如图,抛物线与轴交于两点,与轴交于点,且,.(1)求抛物线的表达式;(2)点是抛物线上一点在抛物线的对称轴上,求作一点,使得的周长最小,并写出点的坐标;连接并延长,过抛物线上一点(点不与点重合)作轴,垂足为,与射线交于点,是否存在这样的点,使得,若存在,求出点的坐标;若不存在,请说明理由5、已知抛物线yax2+3ax+c(a0)与y轴交于点A(1)若a0当a=1,c=1,求该抛物线与x轴交点坐标;点P(m,n)在二次函数

8、抛物线yax2+3ax+c的图象上,且nc0,试求m的取值范围;(2)若抛物线恒在x轴下方,且符合条件的整数a只有三个,求实数c的最小值;(3)若点A的坐标是(0,1),当2cxc时,抛物线与x轴只有一个公共点,求a的取值范围.-参考答案-一、单选题1、C【解析】【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,抛物线的对称轴为:秒,第12秒距离对称轴最近,上述时间中,第12秒时炮弹高度最高;故选:C.【考点】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.2、B【解析】【分析】把x=-2代入方程即可求得

9、k的值; 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:将x=-2代入原方程得到:,解关于k的一元二次方程得:k=0或4,故选:B【考点】此题主要考查了解一元二次方程相关知识点,代入解求值是关键3、D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得【详解】解:A等边三角形是轴对称图形,不是中心对称图形,不符合题意;B直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C正五边形是轴对称图形,不是中心对称图形,不符合题意;D矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D【考点】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转

10、180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形4、A【解析】【分析】根据二次函数的性质和已知条件,对每一项逐一进行判断即可【详解】解:由图像可知a0,c0,对称轴在正半轴,0,b0,故正确;当x=2时,y0,故,故正确;函数解析式为:y=a(x-1)2+2=ax2-2ax+a+2假设成立,结合解析式则有a+2,解得a,故,正确;故选:A【考点】本题考查了二次函数图象与系数的关系,结合图象,运用所学知识是解题关键5、A【解析】【分析】利用配方法把原方程化为顶点式,再根据二次函数的性质即可

11、解答【详解】yx2+4x+5 线 封 密 内 号学级年名姓 线 封 密 外 x2+4x4+4+5(x2)2+9,当x2时,最大值是9,0x3,x0时,最小值是5,故选:A【考点】本题考查二次函数的最值,掌握二次函数的性质与利用配方法将一般式改为顶点式是解答本题的关键二、多选题1、CD【解析】【分析】根据抛物线的性质由得到图像开口向上,根据顶点式得到顶点坐标为,对称轴为直线,当时,随增大而增大【详解】解:由抛物线y2(x3)21得抛物线开口向上,故A正确,不符合题意;由抛物线顶点式可知顶点坐标为,对称轴为直线,故B正确,不符合题意;由抛物线对称轴以及开口方向可知,当时,随增大而增大,故C错误,符

12、合题意;当当x3时,函数值有最小值是1,故D错误,符合题意;故答案为:CD【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握抛物线顶点式的性质2、BD【解析】【分析】直接利用方程根与系数的关系以及根的判别式分析求出即可【详解】解:当a=0时,方程整理为解得, 选项B正确;故选项A错误;当时,方程是一元二次方程,此时的方程表两个不相等的实数根,故选项C错误;若时, ,当时,方程有两个负实数根选项D正确,故选:BD 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】此题主要考查了一元二次方程根的判别式和根与系数的关系,正确把握相关知识是解题关键3、AC【解析】【分析】根据根的判别式代入k值

13、计算即可得到答案【详解】解:A、当时,解得,选项说法正确,符合题意;B、当时,所以方程无实数根,选项说法错误,不符合题意;C、当时,所以方程无解,选项说法正确,符合题意;D、不论为何值时,方程不一定有实数根,选项说法错误,不符合题意;故选AC【点睛】本题考查了一元二次方程的判别式,解题的关键是熟练掌握一元二次方程跟的判别与方程解得关系4、BDE【解析】【分析】A由抛物线的开口方向向下,与y轴交点在负半轴,对称轴在y轴右侧,确定出a,b及c的正负,即可对于abc的正负作出判断;B.函数图象的对称轴为:x=-=1,所以b=-2a,即2a+b=0;C.根据抛物线与x轴的交点即可求得抛物线的对称轴,然

14、后把x=3代入方程即可求得相应的y的符号;D.由图象得到函数值小于0时,x的范围即可作出判断;E.由图象得到当x0时,y随x的变化而变化的趋势【详解】解:根据图示知,抛物线开口方向向上,抛物线与y轴交与负半轴,对称轴在y轴右侧,则a0,c0,b0,所以abc0故A错误;根据图象得对称轴x=1,即-=1,所以b=-2a,即2a+b=0,故B正确;当x=3时,y=0,即9a+3b+c=0故C错误;根据图示知,当-1x3时,y0,故D正确;根据图示知,当x0时,y随x的增大而减小,故E正确;故选BDE【点睛】本题考查了二次函数图象与系数的关系二次函数y=ax2+bx+c(a0)系数符号由抛物线开口方

15、向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定5、CD【解析】【分析】根据二次函数的性质及与x轴另一交点的位置,即可判定A;当x=2时,即可判定B;根据对称性及二次函数的性质,可判定C;根据平移后与x轴有无交点,可判定D【详解】解:由图象可知:该二次函数图象的对称轴为直线,b=2a,由图象可知:该二次函数图象与x轴的左侧交点在-3与-2之间,故与x轴的另一个交点在0与1之间, 线 封 密 内 号学级年名姓 线 封 密 外 当x=1时,y0,即a+b+c0,3a+c0,即4a-2b+c0,故B错误;点关于对称轴对称的点的坐标为,即,在对称轴的左侧y随x的增大而增大,故,故C正确;该二次

16、函数的顶点坐标为(1,n),将函数向下平移n+1个单位,函数图象与x轴无交点,方程无实数根,故D正确,故选:CD【点睛】本题考查了二次函数图象与性质,根据二次函数的图象判定式子是否成立,解题的关键是从图象中找到相关信息三、填空题1、-2【解析】【分析】根据二次函数图象对称轴所在的直线与x轴的交点的坐标,即为它的图象与x轴两交点之间线段中点的横坐标,即可求得【详解】解:函数图像与x轴的两个交点坐标为和由对称轴所在的直线为: 解得 故答案为:-2【考点】本题考查了二次函数的性质及中点坐标的求法,熟练掌握和运用二次函数的性质及中点坐标的求法是解决本题的关键2、y=x2+x【解析】【分析】利用抛物线与

17、x轴的两个交点关于对称轴对称,求出A和B的坐标,再根据顶点坐标在y=2x的图象上,将x=1代入即可求出顶点坐标,设顶点式即可求出二次函数表达式.【详解】解:二次函数的图象与x轴的两个交点A,B关于直线x=1对称,且AB=6,A(-4,0),B(2,0),顶点横坐标为-1,又顶点在函数y=2x的图象上,将x=1代入,得y=2,即顶点坐标为(-1,-2)设二次函数解析式为y=a(x+1)2-2,代入A(-4,0),得a=,即y=(x+1)2-2=x2+x【考点】本题考查了二次函数解析式的求法,中等难度,根据对称轴找到顶点坐标和与x轴的交点坐标是解题关键.3、 (1,-2) 【解析】【分析】(1)将

18、二次函数解析式化为顶点式求解; 线 封 密 内 号学级年名姓 线 封 密 外 (2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,得到当2x23时,y1y2,再将x=2、x=3代入函数关系式进行求解即可 【详解】(1),抛物线顶点坐标为(1,-2),故答案为 (1,-2)(2)抛物线的对称轴为直线x=1,当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,当2x23时,y1y2,对于y=m(x-1)2-2,当x =2时,y=m-2;当x=3时,y=4m-2,【考点】

19、本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系4、#【解析】【分析】根据抛物线的对称轴,开口方向,与轴的交点位置,即可判断,根据二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),即可求得对称轴,以及当时,进而可以判断,根据顶点求得函数的最大值,即可判断【详解】解:抛物线开口向下,对称轴,抛物线与轴交于正半轴,故正确,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),对称轴为,则,当,故不正确,由函数图象以及对称轴为,可知,当时,随的增大而增大,故不正确,对称轴为,则当时,取得最大值,对于任意实数m,总有,即,故正确故答案为:【考点】

20、本题考查了二次函数图象的性质,数形结合是解题的关键5、下 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据二次函数二次项系数的大小判断即可;【详解】,抛物线开口向下;故答案是下【考点】本题主要考查了判断抛物线的开口方向,准确分析判断是解题的关键四、解答题1、k=2【解析】【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a0)的函数,叫做二次函数可得k2-3k+4=2,且k-10,再解即可【详解】由题意得:k23k+4=2,且k10,解得:k=2;【点睛】此题主要考查了二次函数定义,关键是掌握判断函数是否是二次函数,要抓住二次项系数不为0和自变量

21、指数为2这个关键条件2、(1);(2);(3)原料的质量为24吨时,所获销售利润最大,最大销售利润是万元【解析】【分析】(1)利用待定系数法求函数关系式;(2)根据销售收入销售价销售量列出函数关系式;(3)设销售总利润为W,根据销售利润销售收入原料成本加工费列出函数关系式,然后根据二次函数的性质分析其最值【详解】解:(1)设y与x之间的函数关系式为,将(20,15),(30,12.5)代入,可得:,解得:,y与x之间的函数关系式为;(2)设销售收入为P(万元),P与x之间的函数关系式为;(3)设销售总利润为W,整理,可得:,0, 线 封 密 内 号学级年名姓 线 封 密 外 当时,W有最大值为

22、,原料的质量为24吨时,所获销售利润最大,最大销售利润是万元【点睛】本题考查了二次函数的实际应用,涉及了数形结合的数学思想,熟练掌握待定系数法求解析式是解决本题的关键3、(1)20%;(2)798万元,当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【解析】【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,则四月份的游客为人,五月份的游客为人,再列方程,解方程可得答案;(2)分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;设丙种门票价格降低元,景区六月份的门票总收入为万元,再列出与的二次函数关系式,利用二次函数的性质求解最大利润即

23、可得到答案【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,由题意,得 解这个方程,得(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%(2)由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:(万人),购买甲种门票的人数为:(万人),购买乙种门票的人数为:(万人),所以:门票收入问;(万元)答:景区六月份的门票总收入为798万元设丙种门票价格降低元,景区六月份的门票总收入为万元,由题意,得化简,得, ,当时,取最大值,为817.6万元 答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【点睛】本题考查的是一元二次方

24、程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键4、(1);(2)连接交抛物线对称轴于点,则点即为所求,点的坐标为;存在;点的坐标为或【解析】【分析】(1)由,得到A(-2,0),C(3,0),即可写出抛物线的交点式.(2)因为关于对称轴对称,所以,由两点之间线段最短,知连接交抛物线对称轴于点,则点即为所求,先用待定系数法求出解析式,将对称轴代入得到点坐标.设点,根据抛物线的解析式、直线的解析式,写出Q、M的坐标,分当在上方、下方两种情况,列关于m的方程,解出并取大于-2的解,即可写出的坐标. 线 封 密 内 号学级年名姓 线 封 密 外 【详解】(1),结合图

25、象,得A(-2,0),C(3,0),抛物线可表示为:,抛物线的表达式为;(2)关于对称轴对称,,连接交抛物线对称轴于点,则点即为所求.将点,的坐标代入一次函数表达式,得直线的函数表达式为.抛物线的对称轴为直线,当时,,故点的坐标为;存在;设点,则,.当在上方时,解得(舍)或;当在下方时,解得(舍)或,综上所述,的值为或5,点的坐标为或.【点睛】本题考查了二次函数与一次函数综合问题,熟练掌握待定系数法求解析式、最短路径问题是解题的基础,动点问题中分类讨论与数形结合转化为方程问题是解题的关键.5、 (1),m0或m3(2)-9(3)或或【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析

26、】(1)当,时,令时,求解方程的解即可;将P(m,n)代入yax2+3ax+c中,要使nc0,即可得,解出不等式即可;(2)根据抛物线恒在x轴下方,可得,求出a的取值范围,根据符合条件的整数a只有三个,判断并求出c的取值范围,从而求出c的最小值;(3)根据点A的坐标得到抛物线解析式为,然后根据2cxc时,抛物线与x轴只有一个公共点,分三种情况:当时,当时,当时,进行分类讨论求出符合题意的a的取值范围.(1)解:当,时,当时,解得:,抛物线与轴的交点坐标,;,解得:或;(2)解:抛物线恒在x轴下方,解得:,符合条件的整数a只有三个,解得:,的最小值为,(3)解:点A的坐标是(0,1),又当时,抛物线与x轴只有一个公共点,当时,当时,当时,解得:,或者,无解当时,无解, 线 封 密 内 号学级年名姓 线 封 密 外 或者,解得:,当时,解得:,此时,令时,则,解得:,符合题意,综合上述可知:a的取值范围为:或或.【点睛】此题主要考查的是函数图象与x轴的交点问题,在x的取值范围内,根据交点个数进行分类讨论,从而求出a的取值范围

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1