收藏 分享(赏)

2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx

上传人:a**** 文档编号:646220 上传时间:2025-12-12 格式:DOCX 页数:28 大小:781.78KB
下载 相关 举报
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第1页
第1页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第2页
第2页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第3页
第3页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第4页
第4页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第5页
第5页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第6页
第6页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第7页
第7页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第8页
第8页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第9页
第9页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第10页
第10页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第11页
第11页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第12页
第12页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第13页
第13页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第14页
第14页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第15页
第15页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第16页
第16页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第17页
第17页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第18页
第18页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第19页
第19页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第20页
第20页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第21页
第21页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第22页
第22页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第23页
第23页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第24页
第24页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第25页
第25页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第26页
第26页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第27页
第27页 / 共28页
2022-2023学年期末强化人教版九年级数学上册期中综合复习试题 卷(Ⅲ)(含答案详解).docx_第28页
第28页 / 共28页
亲,该文档总共28页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、把四张扑克牌所摆放的顺序与位置如下,小杨同学选取其中一张扑克牌把他

2、颠倒后在放回原来的位置,那么扑克牌的摆放顺序与位置都没变化,那么小杨同学所选的扑克牌是()ABCD2、如图,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为xm,则可以列出关于x的方程是()Ax(262x)=80Bx(242x)=80C(x1)(262x)=80D(x-1)(252x)=803、设方程的两根分别是,则的值为()A3BCD4、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位

3、下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米5、对于函数的图象,下列说法不正确的是()A开口向下B对称轴是直线C最大值为D与轴不相交二、多选题(5小题,每小题4分,共计20分)1、如图,已知顶点为(3,6)的抛物线经过点(1,4),则下列结论中正确的是()ABC关于x的一元二次方程的两根分别为和 线 封 密 内 号学级年名姓 线 封 密 外 D若点(2,m),(5,n)在抛物线上,则2、对于二次函数y=+2x下列结论中正确的个数为( )A它的对称轴是直线x=1B设=+2,=+2,则当时,有C它的图象与x轴的两

4、个交点是(0,0)和(2,0)D当0x2时,y03、已知抛物线y=a+bx+c中,4ab=0,ab+c0,抛物线与x轴有两个不同的交点,且这两个交点之间的距离小于2则下列结论中正确的有()Aabc0,Bc0,Ca+b+c0,D4ac4、二次函数(a,b,c是常数,)的自变量x与函数值y的部分对应值如下表:x21012tm22n已知则下列结论中,正确的是()AB和是方程的两个根CD(s取任意实数)5、二次函数y=ax2+bx+c(a0)的顶点坐标为(-1,n),其部分图象如图所示下列结论正确的是()ABC若,是抛物线上的两点,则D关于x的方程无实数根第卷(非选择题 65分)三、填空题(5小题,每

5、小题5分,共计25分)1、如图(1)是一个横断面为抛物线形状的拱桥,水面在l时,拱顶(拱桥洞的最高点)离水面3米,水面宽4米如果按图(2)建立平面直角坐标系,那么抛物线的解析式是_2、已知(m1)3x50是一元二次方程,则m_3、二次函数的最大值是_4、如果关于的一元二次方程的一个解是,那么代数式的值是_5、如图,在正方形网格中,格点绕某点顺时针旋转角得到格点,点与 线 封 密 内 号学级年名姓 线 封 密 外 点,点与点,点与点是对应点,则_度四、解答题(5小题,每小题8分,共计40分)1、已知抛物线(1)该抛物线的对称轴为 ;(2)若该抛物线的顶点在x轴上,求抛物线的解析式;(3)设点M(

6、m,),N(2,)在该抛物线上,若,求m的取值范围2、如图,直角三角形中,为中点,将绕点旋转得到一动点从出发,以每秒1的速度沿的路线匀速运动,过点作直线,使(1)当点运动2秒时,另一动点也从出发沿的路线运动,且在上以每秒1的速度匀速运动,在上以每秒2的速度匀速运动,过作直线使,设点的运动时间为秒,直线与截四边形所得图形的面积为,求关于的函数关系式,并求出的最大值(2)当点开始运动的同时,另一动点从处出发沿的路线运动,且在上以每秒的速度匀速运动,在上以每秒2的速度匀度运动,是否存在这样的,使为等腰三角形?若存在,直接写出点运动的时间的值,若不存在请说明理由3、(1)计算:(2)解方程:2(x3)

7、2504、冰墩墩是2022年北京冬季奥运会的吉祥物冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来某超市用2400元购进一批冰墩墩玩偶出售若进价降低20%,则可以多买50个市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元求w关于x的函数解析式,并求每周总利润的最大值;当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围5、某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出10

8、0个如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?-参考答案-一、单选题1、D【解析】【分析】根据题意,图形是中心对称图形即可得出答案【详解】 线 封 密 内 号学级年名姓 线 封 密 外 由题意可知,图形是中心对称图形,可得答案为D,故选:D【考点】本题考查了图形的中心对称的性质,掌握中心图形的性质是解题的关键2、A【解析】【分析】设与墙垂直的一边

9、长为xm,则与墙平行的一边长为(26-2x)m,然后根据花圃面积为80m2列关于x的一元一次方程即可【详解】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m由题意得:x(26-2x)=80故答案为A【考点】本题考查了根据题意列一元二次方程,理解题意、设出未知数、表示出相关的量、找到等量关系列方程是解答本题的关键3、A【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可【详解】由可知,其二次项系数,一次项系数,由韦达定理:,故选:A【考点】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定

10、理提升解题效率4、B【解析】【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=10代入可求解【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,BC=10,点B(5,0),0=a(5)2+, 线 封 密 内 号学级年名姓 线 封 密 外 a=-,大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(xb)2,EF=14,点E的横坐标为-7,点E坐标为(-7,-),-=m(xb)2,x1=+b,x

11、2=-+b,MN=4,|+b-(-+b)|=4m=-,顶点为A的小孔所在抛物线的解析式为y=-(xb)2,大孔水面宽度为20米,当x=-10时,y=-,-=-(xb)2,x1=+b,x2=-+b,单个小孔的水面宽度=|(+b)-(-+b)|=5(米),故选:B【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答5、D【解析】【分析】根据二次函数的性质,进行判断,即可得到答案.【详解】解:,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,与y轴肯定有交点,故D错误;故选择:D.【考点】本题考查了二次函数的性质,解题的关键是

12、熟记二次函数的性质.二、多选题1、ABC【解析】【分析】(1)由图象可知抛物线与x轴的交点个数,从而确定相应的一元二次方程根的情况即可;(2)抛物线开口方向向上,即函数有最小值,从而知道选项是否正确;(3)根据图象分析出函数的对称轴,然后分析出关于对称轴的对称点,即可知道对应的一元 线 封 密 内 号学级年名姓 线 封 密 外 二次方程的两个根;(4)根据抛物线开口方向和对称轴,判断分析两点离对称轴的距离,即可得出结论【详解】解:A、根据函数对称性,二次函数图象与x轴有两个交点,即对应的一元二次方程有两个不相等的实数根,此时,即,选项正确;B、抛物线开口方向向上,即函数有最小值,所以,选项正确

13、;C、由函数图象知,对称轴为,所以点与关于对称轴对称,即关于x的一元二次方程的两根分别是和,选项正确;D、因为抛物线开口向上,对称轴为,离对称轴的距离大于离对称轴的距离,所以,所以选项错误故选:ABC【点睛】本题考查二次函数图象性质、二次函数与一元二次方程的关系,二次函数图象的对称性等相关知识点,牢记相关知识点并能灵活应用是解题的关键2、ACD【解析】【分析】利用公式法计算对称轴,利用解方程法确定交点坐标,根据函数图像及其开口判断y的属性,函数的增减性即可【详解】二次函数y=+2x,x=1,故A正确;=+2,=+2,(,),(,)都是二次函数y=+2x图像上的点,对称轴为x=1,a=-10,当

14、1时,;当1时,;故B不正确;二次函数y=+2x,令y=0,得+2x=0,解得 它的图象与x轴的两个交点是(0,0)和(2,0),故C正确;二次函数y=+2x的开口向下,且它的图象与x轴的两个交点是(0,0)和(2,0),当0x2时,y0,故D正确;故选ACD【点睛】本题考查了二次函数的对称性,增减性,与x轴的交点坐标,熟练掌握抛物线的性质是解题的关键3、BCD【解析】【分析】根据抛物线的对称轴,交点的个数,两个交点之间的距离,函数的属性,画函数草图进行判断即可【详解】抛物线y=a+bx+c中,4ab=0, 线 封 密 内 号学级年名姓 线 封 密 外 对称轴x=-2,当x=-1时,y= ab

15、+c0,设其对称点的横坐标为,解得= -3,(-3,a-b+c),(-1,a-b+c)都在x轴的上方,抛物线与x轴有两个不同的交点,且这两个交点之间的距离小于2,画草图如下,a0,b=4a0,0,c0,abc0,当x=1时,y= a+b+c0,0,4ac,A错误,B,C,D都是正确的,故选BCD【点睛】本题考查了二次函数的图像,性质,对称性,抛物线与x轴交点,根的判别式,熟练掌握二次函数的性质,根的判别式,掌握抛物线草图的画法是解题的关键4、BC【解析】【分析】由表中数据,结合二次函数的对称性,可知,二次函数的对称轴为,结合抛物线对称轴为:,得出,由,结合二次函数图象性质,逐一分析各个选项,即

16、可作出相应的判断【详解】解:由表格数据可知,当时,将点代入中,可得由表格数据可知,当时,;当时,;即抛物线对称轴为:,抛物线对称轴为:,化简得,抛物线解析式化为,将点代入中, 线 封 密 内 号学级年名姓 线 封 密 外 化简得,解得,故A选项说法错误,不符合题意;二次函数对称轴为,和时,对应的函数值相等,时,对应函数值为,和是方程的两个根,故B选项说法正确,符合题意;由表中数据可知,二次函数过点和,将点和分别代入二次函数解析式中,可得,故,C选项说法正确,符合题意;,即,s取任意实数,故D选项说法错误,不符合题意;故选:BC【点睛】本题考查了二次函数的图象性质,二次函数与一元二次方程的关系,

17、深入理解函数概念,熟练掌握二次函数图象性质是解题的关键5、CD【解析】【分析】根据二次函数的性质及与x轴另一交点的位置,即可判定A;当x=2时,即可判定B;根据对称性及二次函数的性质,可判定C;根据平移后与x轴有无交点,可判定D【详解】解:由图象可知:该二次函数图象的对称轴为直线,b=2a,由图象可知:该二次函数图象与x轴的左侧交点在-3与-2之间,故与x轴的另一个交点在0与1之间, 线 封 密 内 号学级年名姓 线 封 密 外 当x=1时,y0,即a+b+c0,3a+c0,即4a-2b+c0,故B错误;点关于对称轴对称的点的坐标为,即,在对称轴的左侧y随x的增大而增大,故,故C正确;该二次函

18、数的顶点坐标为(1,n),将函数向下平移n+1个单位,函数图象与x轴无交点,方程无实数根,故D正确,故选:CD【点睛】本题考查了二次函数图象与性质,根据二次函数的图象判定式子是否成立,解题的关键是从图象中找到相关信息三、填空题1、【解析】【分析】设出抛物线方程y=ax2(a0)代入坐标(-2,-3)求得a【详解】解:设出抛物线方程y=ax2(a0),由图象可知该图象经过(-2,-3)点,-3=4a,a=-,抛物线解析式为y=-x2故答案为:【考点】本题主要考查二次函数的应用,解题的关键在于能够熟练掌握待定系数法求解二次函数解析式2、1【解析】【分析】根据一元二次方程的定义m-10,且,解答即可

19、【详解】(m1)3x50是一元二次方程,m-10,且,m-10,且,故答案为:-1【考点】本题考查了一元二次方程的定义即含有一个未知数且含未知数项的次数最高是2的整式方程,熟练掌握定义是解题的关键3、8【解析】【分析】二次函数的顶点式在x=h时有最值,a0时有最小值,a0时有最大值,题中函数 ,故其在时有最大值.【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:,有最大值,当时,有最大值8故答案为8【考点】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.4、【解析】【分析】根据关于的一元二次方程的一个解是,可以得到的值,然后将所求式子变形,再将的

20、值代入,即可解答本题【详解】解:关于的一元二次方程的一个解是,故答案为:2020【考点】本题考查一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义5、【解析】【分析】先连接,作,的垂直平分线交于点,连接,再由题意得到旋转中心,由旋转的性质即可得到答案.【详解】如图,连接,作,的垂直平分线交于点,连接,的垂直平分线交于点,点是旋转中心,旋转角.故答案为.【考点】本题考查旋转,解题的关键是掌握旋转的性质.四、解答题1、(1)直线x=-1;(2)或;(3)当a0时,m4或m2;当a0时,4m2【解析】【分析】(1)利用二次函数的对称轴公式即可求得 线 封 密 内 号学级年名姓 线 封 密

21、外 (2)根据题意可知顶点坐标,再利用待定系数法即可求出二次函数解析式(3)分类讨论当a0时和a0时二次函数的性质,即可求出m的取值范围【详解】(1)利用二次函数的对称轴公式可知对称轴故答案为:(2)抛物线顶点在x轴上,对称轴为,顶点坐标为(-1,0)将顶点坐标代入二次函数解析式得:,整理得:,解得:抛物线解析式为或(3)抛物线的对称轴为直线x-1,N(2,y2)关于直线x-1的对称点为(-4,y2)根据二次函数的性质分类讨论()当a0时,抛物线开口向上,若y1y2,即点M在点N或的上方,则m-4或m2;()当a0时,抛物线开口向下,若y1y2,即点M在点N或的上方,则4m2【点睛】本题为二次

22、函数综合题,掌握二次函数的性质是解答本题的关键2、(1),S的最大值为;(2)存在,m的值为或或或.【解析】【分析】(1)分、和三种情况分别表示出有关线段求得两个变量之间的函数关系即可(2)分两种情形:如图中,由题意点在上运动的时间与点在上运动的时间相等,即当时,当时,当时,分别构建方程求解即可如图中,作于首先证明,根据构建方程即可解决问题【详解】解:(1)如图中,当时,点与点都在上运动,此时两平行线截平行四边形的面积为 线 封 密 内 号学级年名姓 线 封 密 外 如图中,当时,点在上运动,点仍在上运动则,而,故此时两平行线截平行四边形的面积为:,如图中,当时,点和点都在上运动则,此时两平行

23、线截平行四边形的面积为故关于的函数关系式为,当时,S随t增大而增大,当时,S随t增大而增大,当时,S随t增大而减小,当t=8时,S最大,代入可得S=;(2)如图中,由题意点在上运动的时间与点在上运动的时间相等,当时,则有,解得,当时,则有,解得,当时,则有,解得如图中,作于 线 封 密 内 号学级年名姓 线 封 密 外 在RtCHR中,四边形是平行四边形,四边形是矩形,当时,则有,解得,综上所述,满足条件的m的值为或或或【点睛】本题属于四边形综合题,考查了平行四边形的性质,多边形的面积,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中

24、考压轴题3、(1);(2)x8或2【解析】【分析】(1)直接利用立方根以及算术平方根的性质化简得出答案;(2)直接利用平方根的定义计算得出答案【详解】(1)原式23(1)1+1;(2)2(x3)250(x3)225,则x35,解得:x8或2【点睛】此题考查实数的运算,解一元二次方程-配方法,解题关键在于掌握运算法则.4、 (1)每个冰墩墩钥匙扣的进价为12元(2),最大值为1960元;每个冰墩墩玩偶售价x的范围为:【解析】【分析】(1)设每个冰墩墩钥匙扣的进价为x元,根据题意列出分式方程,进而计算求解即可;(2)根据题意列出一次函数关系,根据一次函数的性质求得最大利润即可;根据题意列出方程,根

25、据二次函数的性质求得的范围,根据题意取整数解即可(1)设每个冰墩墩钥匙扣的进价为x元, 线 封 密 内 号学级年名姓 线 封 密 外 由题意得:,解得,经检验,是原方程的解且符合题意,答:每个冰墩墩钥匙扣的进价为12元;(2)且x是大于20的正整数当时,w有最大值,最大值为1960元售价为24元或25元或26元或27元或28元解析如下:由题意得,解得或29抛物线开口向下,x是大于20的正整数当时,每周总利润不低于1870元,【点睛】本题考查了分式方程的应用,二次函数的应用,一次函数的应用,根据题意列出方程或关系式是解题的关键5、(1)y=-2x+220;(2)当销售单价是70元或80元时,该网

26、店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【解析】【分析】(1)根据题意中销售量y(个)与售价x(元)之间的关系即可得到结论;(2)根据题意列出方程(-2x+220)(x-40)=2400,解方程即可求解;(3)设每星期利润为w元,构建二次函数模型,利用二次函数性质即可解决问题【详解】(1)由题意可得,y=100-2(x-60)=-2x+220;(2)由题意可得,(-2x+220)(x-40)=2400,解得,当销售单价是70元或80元时,该网店每星期的销售利润是2400元答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元(3)设该网店每星期的销售利润为w元,由题意可得w=(-2x+220)(x-40)=,当时,w有最大值,最大值为2450,当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【点睛】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1