1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中综合复习试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩
2、形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()A(502x)(402x)3000B(50+2x)(40+2x)3000C(50x)(40x)3000D(50+x)(40+x)30002、已知ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m0两根,则m的值等于()A12B16C12或16D12或163、在下列图形中,既是轴对称图形,又是中心对称图形的是()A等边三角形B直角三角形C正五边形D矩形4、已知二次函数yax2+bx+c与自变量x的部分对应值如表,下列说法错误的是()x1013y3131Aa0B方程ax2+bx+c2的正
3、根在4与5之间C2a+b0D若点(5,y1)、(,y2)都在函数图象上,则y1y25、对于函数的图象,下列说法不正确的是()A开口向下B对称轴是直线C最大值为D与轴不相交二、多选题(5小题,每小题4分,共计20分)1、下列命题正确的是()A菱形既是中心对称图形又是轴对称图形B的算术平方根是5C如果一个多边形的各个内角都等于108,则这个多边形是正五边形D如果方程有实数根,则实数2、如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 A
4、b0Bab+c0C阴影部分的面积为4D若c=1,则b2=4a3、已知关于的方程,下列说法不正确的是()A当时,方程无解B当时,方程有两个相等的实数根C当时,方程有两个相等的实数根D当时,方程有两个不相等的实数根4、如图是抛物线y1ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2mx+n(m0)与抛物线交于A,B两点,下列结论中正确的是()A2a+b0Bm+n3C抛物线与x轴的另一个交点是(1,0)D方程ax2+bx+c3有两个相等的实数根E当1x4时,有y2y15、下列命题中不正确的命题有()A方程kx2-x-2=0是一元二次方程Bx
5、=1与方程x2=1是同解方程C方程x2=x与方程x=1是同解方程D由(x+1)(x-1)=3可得x+1=3或x-1=3第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),与y轴交于点C下列结论:abc0;3ac0;当x0时,y随x的增大而增大;对于任意实数m,总有abam2bm其中正确的是 _(填写序号)2、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_3、若x1,x2是方程x24x20200的两个实数根,则代数式x122x1+2x2的值等于_4、设分别为一元二次方程的两个实数根,则_5、
6、如图,抛物线yx2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CDABAD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为_四、解答题(5小题,每小题8分,共计40分)1、若二次函数图像经过,两点,求、的值.2、如图,抛物线交x轴于,两点,交y轴于点,点Q为线段BC上的动点 线 封 密 内 号学级年名姓 线 封 密 外 (1)求抛物线的解析式;(2)求的最小值;(3)过点Q作交抛物线的第四象限部分于点P,连接PA,PB,记与的面积分别为,设,求点P坐标,使得S最大,并求此最大值3、一商店销售某种商品,平均每天可售出20件,每件盈利
7、40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为_件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?4、已知m是方程的一个根,试求的值.5、今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:购票方式甲乙丙可游玩景点和门票价格100元/人80元/人160元/人据预测,
8、六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票若丙种门票价格下降10元,求景区六月份的门票总收入;问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?-参考答案-一、单选题1、B【解析】【分析】根据题意表示出矩形挂画的长和宽,再根据长方形的面积公式可得方程【详解】解:设边框的宽为x cm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B
9、【考点】本题主要考查由实际问题抽象出一元二次方程,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程 线 封 密 内 号学级年名姓 线 封 密 外 2、D【解析】【分析】由ABC为等腰三角形,BC6,且AB,AC为方程x28x+m0两根,可得两种情况:BC6AB,把6代入方程得3648+m0ABAC,此时方程的判别式为0,分别求解即可【详解】解:ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m0两根,则BC6AB,把6代入方程得3648+m0,m12;A
10、BAC,此时方程的判别式为0,644m0,m16故m的值等于12或16故选:D【考点】本题考查了一元二次方程的判别式和等腰三角形的性质,熟练掌握知识点是解题的关键3、D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得【详解】解:A等边三角形是轴对称图形,不是中心对称图形,不符合题意;B直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C正五边形是轴对称图形,不是中心对称图形,不符合题意;D矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D【考点】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合
11、,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形4、B【解析】【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对A进行判断;利用抛物线的对称性可得x1和x4的函数值相等,则可对B进行判断;利用x0和x3时函数值相等可得到抛物线的对称轴方程,则可对C进行判断;利用二次函数的性质则可对D进行判断【详解】解:二次函数值先由小变大,再由大变小,抛物线的开口向下,a0,故A正确;x1时,y3,x4时,y3,二次函数yax2+bx+c的函数值为2时,1x0或3x4,即方程ax2+bx+c2的负根在1与0之间,正根在3与4之间,故B
12、错误; 线 封 密 内 号学级年名姓 线 封 密 外 抛物线过点(0,1)和(3,1),抛物线的对称轴为直线x,1,2a+b0,故C正确;(,y2)关于直线x的对称点为(,y2),5,y1y2,故D正确;故选:B【考点】本题主要考查了一元二次方程根与系数的关系、抛物线与x轴的交点、图象法求一元二次方程的近似根、根的判别式、二次函数图象与系数的关系,准确计算是解题的关键5、D【解析】【分析】根据二次函数的性质,进行判断,即可得到答案.【详解】解:,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,与y轴肯定有交点,故D错误;故选择:D.【考点】本题考查了二次函数的性质
13、,解题的关键是熟记二次函数的性质.二、多选题1、AD【解析】【分析】利用菱形的对称性、算术平方根的定义、多边形的内角和、一元二次方程根的判别式等知识分别判断后即可确定正确的选项【详解】解:A、菱形既是中心对称图形又是轴对称图形,故命题正确,符合题意;B、的算术平方根是,故命题错误,不符合题意;C、若一个多边形的各内角都等于108,各边也相等,则它是正五边形,故命题错误,不符合题意;D、对于方程,当a0时,方程,变为2x10,有实数根,当a0时,时,即,方程有实数根,综上所述,方程有实数根,则实数,故命题正确,符合题意故选:AD【点睛】考查了命题与定理的知识,解题的关键是了解算术平方根的定义、菱
14、形的对称性、多边形的内角和、一元二次方程根的判别式等知识,难度不大 线 封 密 内 号学级年名姓 线 封 密 外 2、CD【解析】【分析】根据抛物线的开口方向和抛物线的平移判断即可;【详解】抛物线开口向上,又对称轴,故A不正确;时,故B不正确;抛物线向右平移了2个单位,平行四边形的底时2,函数y=ax2+bx+c的最小值是,平行四边形的高是2,阴影部分的面积是,故C正确;,故D正确;故选CD【点睛】本题主要考查了二次函数图象与几何变换,准确分析判断是解题的关键3、ABD【解析】【分析】利用k的值,分别代入求出方程的根的情况即可【详解】关于的方程,A当k= 0时,x- 1=0,则x=1,故此选项
15、错误,符合题意;B当k = 1时,- 1 = 0,x=1,方程有两个不相等的实数解,故此选项错误,符合题意;C当k=-1时,则,此时方程有两个相等的实数根,故此选项正确,不符合题意;D当时,根据A选项,若k= 0,此时方程有一个实数根,故此选项错误,符合题意,故选:ABD【点睛】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键4、ABD【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可【详解】解:A、抛物线对称轴为直线, 线 封 密 内 号学级年名姓 线 封 密 外 ,故A正确;B、直线y2mx+n(m0)与抛物线交于A,B两点,当时,
16、故B正确;C、抛物线与x轴的一个交点为,对称轴为,抛物线与x轴的另一个交点是,故C错误;D、方程ax2+bx+c3从函数角度可以看作是y1ax2+bx+c与直线求交点,从图像可以知道,抛物线顶点为,从抛物线与直线有且只有一个交点,故方程ax2+bx+c3有两个相等的实数根,故D正确;E、由图像可知,当时,故E错误;故选:ABD【点睛】本题考查了二次函数的性质、方程与二次函数的关系、函数与不等式的关系等知识,解答关键是数形结合5、ABCD【解析】【分析】根据方程、方程的解的有关定义以及解方程等知识点逐项判断即可【详解】解:A.方程kx2x2=0当k0时才是一元二次方程,故错误;B.x=1与方程x
17、2=1不是同解方程,故错误;C.方程x2=x与方程x=1不是同解方程,故错误;D.由(x+1)(x1)=3可得x=2,故错误故选:ABCD【点睛】本题主要考查了一元二次方程的定义、解一元二次方程、同解方程等知识点,掌握解一元二次方程的方法是解答本题的关键三、填空题1、#【解析】【分析】根据抛物线的对称轴,开口方向,与轴的交点位置,即可判断,根据二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),即可求得对称轴,以及当时,进而可以判断,根据顶点求得函数的最大值,即可判断【详解】解:抛物线开口向下,对称轴,抛物线与轴交于正半轴,故正确,二次函数yax2+bx+c的图象经过点A(3,0
18、),B(1,0), 线 封 密 内 号学级年名姓 线 封 密 外 对称轴为,则,当,故不正确,由函数图象以及对称轴为,可知,当时,随的增大而增大,故不正确,对称轴为,则当时,取得最大值,对于任意实数m,总有,即,故正确故答案为:【考点】本题考查了二次函数图象的性质,数形结合是解题的关键2、1【解析】【分析】利用因式分解法求出x1,x2,再根据根的关系即可求解【详解】解(x-3m)(x-m)=0x-3m=0或x-m=0解得x1=3m,x2=m,3m-m=2解得m=1故答案为:1【考点】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的运用3、2028【解析】【分析】根据一元二次方程的解的概
19、念和根与系数的关系得出x12-4x1=2020,x1+x2=4,代入原式=x12-4x1+2x1+2x2=x12-4x1+2(x1+x2)计算可得【详解】解:x1,x2是方程x24x20200的两个实数根,x1+x24,x124x120200,即x124x12020,则原式x124x1+2x1+2x2x124x1+2(x1+x2)2020+242020+82028,故答案为:2028【考点】本题主要考查根与系数的关系,解题的关键是掌握x1,x2是一元二次方程ax2+bx+c=0(a0)的两根时,x1+x2=,x1x2=4、2020 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】
20、根据一元二次方程的解结合根与系数的关系即可得出m22m2022,mn2,将其代入m23mnm22m(mn)中即可求出结论【详解】解:m,n分别为一元二次方程x22x20220的两个实数根,m22m2022,mn2,m23mnm22m(mn)2022(2)2020故答案为:2020【考点】本题考查了根与系数的关系以及一元二次方程的解,根据一元二次方程的解结合根与系数的关系得出m22m2022,mn2是解题的关键5、2【解析】【分析】利用二次函数图象上点的坐标特征可求出点A,B,C,D的坐标,由点A,D的坐标,利用待定系数法可求出直线AD的解析式,利用一次函数图象上点的坐标特征可求出点E的坐标,再
21、利用二次函数图象上点的坐标特征可得出点P,Q的坐标,进而可求出线段PQ的长【详解】解:当y0时,x2+x+20,解得:x12,x24,点A的坐标为(2,0);当x0时,yx2+x+22,点C的坐标为(0,2);当y2时,x2+x+22,解得:x10,x22,点D的坐标为(2,2)设直线AD的解析式为ykx+b(k0),将A(2,0),D(2,2)代入ykx+b,得:解得:直线AD的解析式为yx+1当x0时,yx+11,点E的坐标为(0,1)当y1时,x2+x+21,解得:x11,x21+,点P的坐标为(1,1),点Q的坐标为(1+,1),PQ1+(1)2故答案为:2 线 封 密 内 号学级年名
22、姓 线 封 密 外 【考点】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点P,Q的坐标是解题的关键四、解答题1、b=-3,c=-4.【解析】【分析】将,代入中,求解二元一次方程组即可解题.【详解】解:将,代入中得, 解得: b=-3,c=-4.【点睛】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.2、(1);(2)5;(3)时,S有最大值【解析】【分析】(1)利用待定系数法即可求解;(2)作点O关于直线BC的对称点D,连接AD,交BC于点Q,此时|Q
23、O|+|QA|有最小值为AD,利用勾股定理即可求解;(3)先求得直线BC的表达式为y=x3,直线AC的表达式为y=3x3可设P(m,m22m3)得到直线PQ的表达式可设为y=3x+ m2+m3,由得到二次函数,再利用二次函数的性质求解即可【详解】(1)由已知:y=a(x3)(x+1),将(0,3)代入上式得:3=a(03)(0+1),a=1,抛物线的解析式为y=2x3;(2)作点O关于直线BC的对称点D,连接DC 、DB,B(3,0),C(0,3),BOC=90,OB=OC=3,O、D关于直线BC对称, 线 封 密 内 号学级年名姓 线 封 密 外 四边形OBDC为正方形,D(3,3),连接A
24、D,交BC于点Q,由对称性|QD|=|QO|,此时|QO|+|QA|有最小值为AD,AD=,|QO|+|QA|有最小值为5;(3)由已知点A(1,0), B(3,0),C(0,3),设直线BC的表达式为y=kx3,把B(3,0)代入得:0=3k3,解得:,直线BC的表达式为y=x3,同理:直线AC的表达式为y=3x3PQAC,直线PQ的表达式可设为y=3x+b,由(1)可设P(m,m22m3)代入直线PQ的表达式可得b= m2+m3,直线PQ的表达式可设为y=3x+ m2+m3,由,解得,即,由题意:,P,Q都在四象限,P,Q的纵坐标均为负数,即,根据已知条件P的位置可知时,S最大,即时,S有
25、最大值【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数,二次函数的解析式,二次函数的最值等知识,数形结合,熟练掌握相关性质及定理是解题的关键3、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.【解析】【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出23=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数每件盈利=每天销售这种商品利润列出方程解答即可【详解】(1)若降价3元,则平均每天销售数量为20+23=26件(2)设每件商品应降价x元时,该商店每天销售利润为120
26、0元根据题意,得(40-x)(20+2x)=1200, 线 封 密 内 号学级年名姓 线 封 密 外 整理,得x2-30x+200=0,解得:x1=10,x2=20要求每件盈利不少于25元,x2=20应舍去,x=10答:每件商品应降价10元时,该商店每天销售利润为1200元【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数每件盈利=每天销售的利润是解题关键4、2015【解析】【分析】先根据一元二次方程的解的定义得到,变形有或,再利用整体思想进行计算【详解】解:m是方程的一个根,代入即得.或.【点睛】本题考查了一元二次方程的解的定义,解题的关键是适当选择整体代入法,使
27、得解答变得简单.5、(1)20%;(2)798万元,当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【解析】【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,则四月份的游客为人,五月份的游客为人,再列方程,解方程可得答案;(2)分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;设丙种门票价格降低元,景区六月份的门票总收入为万元,再列出与的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,由题意,得 解这个方程,得(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%(2)由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:(万人),购买甲种门票的人数为:(万人),购买乙种门票的人数为:(万人),所以:门票收入问;(万元)答:景区六月份的门票总收入为798万元设丙种门票价格降低元,景区六月份的门票总收入为万元,由题意,得 线 封 密 内 号学级年名姓 线 封 密 外 化简,得, ,当时,取最大值,为817.6万元 答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【点睛】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键