1、京改版八年级数学上册期中模拟考试试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列运算正确的是()ABCD2、将的分母化为整数,得()ABCD3、化简的结果为()ABCD4、若关于的分式方程有增
2、根,则的值为()A2B3C4D55、一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度如果设船在静水中的速度为x千米/时,可列出的方程是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列说法错误的是()A1的平方根是1B1的立方根是1C是3的平方根D3是的平方根2、(多选)下列语句及写成式子不正确的是()A9是81的算术平方根,即B的平方根是C1的立方根是D与数轴上的点一一对应的是实数3、下列说法不正确的是()A的平方根是B负数没有立方根CD1的立方根是4、下列计算不正确的是()A(1)01BCD用科学记数法表示0.0000108
3、1.081055、下列运算中,错误的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数示例:即4+3=7,则(1)用含x的式子表示m_;(2)当y2时,n的值为_2、观察下列各式:,请利用你所发现的规律,计算+,其结果为_3、若将三个数,表示在数轴上,则被如图所示的墨迹覆盖的数是_.4、数学家发明了一个魔术盒,当任意 “数对 ” 进入其中时,会得到一个新的数:,例如把放入其中,就会得到,现将 “数对”放入其中后,得到的数是_5、对于实数,定义运算若,则_四、解答题(5小题,每小题8分,共计40分)1、
4、计算:(1)(2)2、计算:3、计算:(1);(2).4、化简求值:,其中5、计算:(1)(2)-参考答案-一、单选题1、D【解析】【分析】根据分式的加减乘除的运算法则进行计算即可得出答案【详解】解:A. ,计算错误,不符合题意;B. ,计算错误,不符合题意;C. ,计算错误,不符合题意;D. ,计算正确,符合题意;故选:D【考点】本题考查了分式的加减乘除的运算,熟练掌握运算法则是解题的关键2、D【解析】【分析】根据分式的基本性质求解【详解】解:将的分母化为整数,可得故选:D【考点】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键3、B【解析】【分析】根据同分母的分式减法法则进行化简
5、即可得到结果【详解】解:,故选:【考点】此题主要考查同分母分式的减法,熟练掌握运算法则是解答此题的关键4、D【解析】【分析】根据分式方程有增根可求出,方程去分母后将代入求解即可.【详解】解:分式方程有增根,去分母,得,将代入,得,解得故选:D【考点】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键5、A【解析】【分析】未知量是速度,有路程,一定是根据时间来列等量关系的关键描述语是:顺流航行90千米与逆流航行60千米所用的时间相等,等量关系为:顺流航行90千米时间=逆流航行60千米所用的时间【详解】顺流所用的时间为:;逆流所用的时间为:.所列方程为:.故选A【考
6、点】本题考查由实际问题抽象出分式方程,解题的关键是读懂题意,得到分式方程.二、多选题1、AD【解析】【分析】根据平方根和立方根的定义即可求解【详解】解:A、1的平方根是1和-1,故A错误,符合题意;B、1的立方根是1,故B正确,不符合题意;C、是3的平方根,故C正确,不符合题意;D、因为,所以的平方根是 ,故D错误,符合题意故选:AD【考点】本题主要考查了平方根和立方根的定义,熟练掌握平方根和立方根的定义是解题的关键2、ABC【解析】【分析】根据平方根,算术平方根、立方根以及数轴与实数的关系逐项进行判断即可【详解】解:A、9是81的算术平方根,即=9,因此选项A符合题意;B、a2的平方根为=a
7、,因此选项B符合题意;C、1的立方根是1,因此选项C符合题意;D、实数与数轴上的点一一对应,因此选项D不符合题意;故答案为:ABC【考点】本题考查了平方根、算术平方根、立方根以及数轴与实数,理解平方根、算术平方根、立方根的意义是正确判断的前提3、ABD【解析】【分析】根据平方根(若一个实数x的平方等于a,则x是a的平方根)和立方根(若一个实数x的立方等于a,则x是a的立方根)的定义求解【详解】A选项:9,的平方根是,故选项计算错误,符合题意;B选项:如(-1)3=-1,所以-1的立方根是-1,故选项结论错误,符合题意;C选项:,故选项计算正确,不符合题意;D选项:1的立方根是1,故选项计算错误
8、,符合题意故选:ABD【考点】考查立方根以及平方根的定义,解题关键是掌握立方根以及平方根的定义4、ABCD【解析】【分析】根据负整数指数幂和科学计算法的计算方法进行求解判断即可【详解】解:A、,故此选项符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、用科学记数法表示,故此选项符合题意;故选ABCD【考点】本题主要考查了负整数指数幂和科学计算法,解题的关键在于能够熟练掌握相关计算法则5、ABCD【解析】【分析】根据算术平方根和有理数的乘方的求解方法进行逐一求解判断即可【详解】解:A、 ,故此选项符合题意;B、=4,故此选项符合题意;C、根号里面不能为负,故此选项符合题意;D、 ,故
9、此选项符合题意;故选ABCD【考点】本题主要考查了算术平方根和有理数的乘方,解题的关键在于能够熟练掌握相关计算方法三、填空题1、 【解析】【分析】(1)根据题意,可以用含x的式子表示出m;(2)根据图形,可以用x的代数式表示出y,列出关于x的分式方程,从而可以求得x的值,进而得到n的值【详解】解:(1)由图可得, 故答案为:;(2),解得,故答案为:【考点】本题考查了分式的加减、解分式方程,解答本题的关键是明确题意,列出相应的代数式及分式方程及求出方程的解2、【解析】【分析】直接根据已知数据变化规律进而将原式变形求出答案【详解】由题意可得:+=+1+1+1+=9+(1+)=9+=故答案为【考点
10、】:此题主要考查了数字变化规律,正确将原式变形是解题关键3、【解析】【分析】根据数轴确定出被覆盖的数的范围,再根据无理数的大小确定出答案即可【详解】因为,所以,所以,故不在此范围;因为,所以,故在此范围;因为,所以,故不在此范围.所以被墨迹覆盖的数是.故答案为.【考点】此题考查估算无理数的大小,实数与数轴,解题关键在于估算出取值范围.4、12【解析】【分析】根据题中“数对”的新定义,求出所求即可【详解】解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,故答案为:12【考点】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键5、【解析】【分析】根据给出的新定义分别求出与的值,
11、根据得出关于a的一元一次方程,求解即可【详解】解:,解得,故答案为:【考点】本题考查解一元一次方程、新定义下实数的运算等内容,理解题干中给出的新定义是解题的关键四、解答题1、(1);(2)【解析】【分析】(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可【详解】解:(1)=;(2) =【考点】本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键2、【解析】【分析】直接利用绝对值的性质以及立方根的性质分别化简得出答案【详解】解:原式=4+-2-2=【考点】本题考查实数运算,正确化简各数是解题关键
12、3、 (1)(2)【解析】【分析】(1)先把各二次根式化为最简二次根式得到,然后合并同类二次根式即可;(2)先把各二次根式化为最简二次根式和根据二次根式的乘除法运算得到,然后合并(1)原式;(2)原式【考点】本题考查二次根式的混合运算,解题的关键是掌握二次根式混合运算的相关法则4、,【解析】【分析】先算分式的加减法,再把除法化为乘法,进行约分化简,最后代入求值,即可求解【详解】解:原式=,当时,原式=【考点】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键5、(1)9;(2)【解析】【分析】(1)直接利用完全平方公式以及多项式乘多项式运算法则计算得出答案;(2)直接利用二次根式的乘除运算法则计算得出答案【详解】解:(1);(2)【考点】本题考查了二次根式的性质与化简以及整式的混合运算,正确化简二次根式是解题的关键