1、第3部分:函数与导数一、选择题:1(2010年高考山东卷文科3)函数的值域为A. B. C. D. 【答案】A【解析】因为,所以,故选A。【命题意图】本题考查对数函数的单调性、函数值域的求法等基础知识。2(2010年高考山东卷文科5)设为定义在上的奇函数,当时,(为常数),则(A)-3 (B)-1 (C)1 (D)3【答案】A【解析】因为为定义在R上的奇函数,所以有,解得,所以当时, ,即,故选D.【命题意图】本题考查函数的基本性质,熟练函数的基础知识是解答好本题的关键.3(2010年高考山东卷文科8)已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得
2、最大年利润的年产量为(A)13万件 (B)11万件 (C) 9万件 (D)7万件【答案】C【解析】令导数,解得;令导数,解得,所以函数在区间上是增函数,在区间上是减函数,所以在处取极大值,也是最大值,故选C。 【命题意图】本题考查导数在实际问题中的应用,属基础题。4(2010年高考山东卷文科10)观察,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=(A) (B) (C) (D)【答案】D【解析】由给出的例子可以归纳推理得出:若函数是偶函数,则它的导函数是奇函数,因为定义在上的函数满足,即函数是偶函数,所以它的导函数是奇函数,即有=,故选D。【命题意图】本题考查函数、归纳推理等基础知识
3、,考查同学们类比归纳的能力。5(2010年高考山东卷文科11)函数的图像大致是【答案】A【解析】因为当x=2或4时,2x -=0,所以排除B、C;当x=-2时,2x -=,故排除D,所以选A。【命题意图】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力。6(2010年高考天津卷文科4)函数f(x)= (A)(-2,-1) (B) (-1,0) (C) (0,1) (D) (1,2)【答案】C【解析】因为,所以选C。【命题意图】本小题考查函数根的存在性定理,属基础题。7(2010年高考天津卷文科6)设(A)acb (B) )bca (C) )abc (D) )ba0,
4、y0,函数f(x)满足f(xy)f(x)f(y)”的是C(A)幂函数(B)对数函数(C)指数函数(D)余弦函数【答案】C29(2010年高考湖北卷文科3)已知函数,则A.4B. C.-4D-【答案】B【解析】根据分段函数可得,则,所以B正确.30(2010年高考湖北卷文科5)函数的定义域为A.( ,1)B(,)C(1,+)D. ( ,1)(1,+)【答案】A31(2010年高考湖南卷文科8)函数y=ax2+ bx与y= (ab 0,| a | b |)在同一直角坐标系中的图像可能是D32( 2010年高考全国卷文科10)设则(A)(B) (C) (D) 10.C 【命题意图】本小题以指数、对数
5、为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.【解析1】 a=2=, b=In2=,而,所以ab,c=,而,所以ca,综上cab.【解析2】a=2=,b=ln2=, ,; c=,ca1)的反函数是(A)y=-1(x0) (B) y=+1(x0) (C) y=-1(x R) (D)y=+1 (x R)【解析】D:本题考查了函数的反函数及指数对数的互化,函数Y=1+LN(X-1)(X1), 35(2010年高考四川卷文科2)函数y=log2x的图象大致是高考#资*源网(A) (B) (C) (D)解析:本题考查对数函数的图象和基本性质.答案:C36(
6、2010年高考四川卷文科5)函数的图像关于直线对称的充要条件是(A) (B) (C) (D)解析:函数f(x)x2mx1的对称轴为xw_w w. k#s5_u.c o*m于是1 m2答案:A二、填空题:1(2010年高考天津卷文科16)设函数f(x)=x-,对任意x恒成立,则实数m的取值范围是 。【答案】【解析】因为对任意x,恒成立,所以当时,有对任意x恒成立,即,解得,即;当时,有对任意x恒成立,x无解,综上所述实数m的取值范围是。【命题意图】本题考查函数中的恒成立问题,考查函数与方程思想、转化与化归思想。2(2010年高考北京卷文科14)如图放置的边长为1的正方形PABC沿x轴滚动。设顶点
7、p(x,y)的纵坐标与横坐标的函数关系是,则的最小正周期为 ; 在其两个相邻零点间的图像与x轴所围区域的面积为 。说明:“正方形PABC沿x轴滚动”包含沿x轴正方向和沿x轴负方向滚动。沿x轴正方向滚动是指以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续,类似地,正方形PABC可以沿着x轴负方向滚动。3(2010年高考上海卷文科9)函数的反函数的图像与轴的交点坐标是 (0,-2) 。解析:考查反函数相关概念、性质法一:函数的反函数为,另x=0,有y=-2法二:函数图像与x轴交点为(-2,0),利用对称性可知,函数的反函数的图像与轴的交点为(0,-2)4(201
8、0年高考陕西卷文科13)已知函数f(x)若f(f(0)4a,则实数a .【答案】2三、解答题:1(2010年高考山东卷文科21)(本小题满分12分)已知函数(I)当时,求曲线在点处的切线方程;(II)当时,讨论的单调性.【命题意图】本小题主要考查导数的概念、导数的几何意义和利用导数研究函数性质的能力,考查分类讨论思想、数形结合思想和等价变换思想。【解析】解:() 当 所以 因此, 即 曲线 又 所以曲线()因为 , 所以 , 令 (1) 当a=0时,g(x)=-x+1,x(0,+),所以 当x(0,1)时,g(x)0,此时f(x)0,函数f(x)单调递减(2) 当a0时,由f(x)=0,即 a
9、x2-x+1=0, 解得 x1=1,x2=1/a-1 当a=1/2时,x1= x2, g(x)0恒成立,此时f(x)0,函数f(x)在(0,+)上单调递减; 当0a10x(0,1)时,g(x)0,此时f(x)0,此时f(x)0,此时f(x)o,函数f(x)单调递减 当a0时,由于1/a-10,此时f,(x)0函数f(x)单调递减;x(1,)时,g(x)0此时函数f,(x)0单调递增。综上所述:当a0 时,函数f(x)在(0,1)上单调递减;函数f(x)在 (1, +) 上单调递增当a=1/2时,函数f(x)在(0, + )上单调递减当0a0. ()若a=1,求曲线y=f(x)在点(2,f(2)
10、处的切线方程;()若在区间上,f(x)0恒成立,求a的取值范围.【命题意图】本小题主要考查曲线的切线方程、利用导数研究函数的单调性与极值、解不等式等基础知识,考查运算能力及分类讨论的思想方法.【解析】()解:当a=1时,f(x)=,f(2)=3;f(x)=, f(2)=6.所以曲线y=f(x)在点(2,f(2)处的切线方程为y-3=6(x-2),即y=6x-9.()解:f(x)=.令f(x)=0,解得x=0或x=.以下分两种情况讨论:(1) 若,当x变化时,f(x),f(x)的变化情况如下表:X0f(x)+0-f(x)极大值当等价于,解不等式组得-5a2,则.当x变化时,f(x),f(x)的变
11、化情况如下表:X0f(x)+0-0+f(x)极大值极小值当时,f(x)0等价于即,解不等式组得或.因此2a5.综合(1)和(2),可知a的取值范围为0a5.当等价于 解不等式组得-5a0,所以“在(-,+)内无极值点”等价于“在(-,+)内恒成立”。由(*)式得。又解 得即的取值范围5(2010年高考江西卷文科17)(本小题满分12分)设函数(1)若的两个极值点为,且,求实数的值;(2)是否存在实数,使得是上的单调函数?若存在,求出的值;若不存在,说明理由【答案】解:(1)由已知有,从而,所以;(2)由,所以不存在实数,使得是上的单调函数6. (2010年高考浙江卷文科21)(本题满分15分)
12、已知函数(a-b)b)。(I)当a=1,b=2时,求曲线在点(2,)处的切线方程。(II)设是的两个极值点,是的一个零点,且,证明:存在实数,使得 按某种顺序排列后的等差数列,并求解析:本题主要考查函数的极值概念、导数运算法则、切线方程、导线应用、等差数列等基础知识,同时考查抽象概括、推理论证能力和创新意识。()解:当a=1,b=2时,因为f(x)=(x-1)(3x-5)故f(2)=1f(2)=0,所以f(x)在点(2,0)处的切线方程为y=x-2()证明:因为f(x)3(xa)(x),由于ab.故a0),由已知得 =alnx,=, 解德a=,x=e2,两条曲线交点的坐标为(e2,e) 切线的
13、斜率为k=f(e2)= ,切线的方程为y-e=(x- e2). (2)由条件知 当a.0时,令h (x)=0,解得x=,所以当0 x 时 h (x)时,h (x)0,h(x)在(0,)上递增。所以x是h(x)在(0, + )上的唯一极致点,且是极小值点,从而也是h(x)的最小值点。所以(a)=h()= 2a-aln=2当a0时,h(x)=(1/2-2a) /2x0,h(x)在(0,+)递增,无最小值。故 h(x) 的最小值(a)的解析式为2a(1-ln2a) (ao)(3)由(2)知(a)=2a(1-ln2a) 则 1(a )=-2ln2a,令1(a )=0 解得 a =1/2当 0a0,所以
14、(a ) 在(0,1/2) 上递增当 a1/2 时, 1(a )0,所以(a ) 在 (1/2, +)上递减。所以(a )在(0, +)处取得极大值(1/2 )=1因为(a )在(0, +)上有且只有一个极致点,所以(1/2)=1也是(a)的最大值所当a属于 (0, +)时,总有(a)112(2010年高考湖北卷文科21)(本小题满分14分)设函数,其中a0,曲线在点P(0,)处的切线方程为y=1()确定b、c的值()设曲线在点()及()处的切线都过点(0,2)证明:当时,()若过点(0,2)可作曲线的三条不同切线,求a的取值范围。13(2010年高考湖南卷文科21)(本小题满分13分)已知函
15、数其中a0,且a-1.()讨论函数的单调性;()设函数(e是自然数的底数)。是否存在a,使在a,-a上为减函数?若存在,求a的取值范围;若不存在,请说明理由。14( 2010年高考全国卷文科21)(本小题满分12分)(注意:在试题卷上作答无效)已知函数(I)当时,求的极值;(II)若在上是增函数,求的取值范围解:()当时,在内单调减,在内单调增,在时,有极小值. 所以是的极小值.15(2010年高考全国卷文科21)(本小题满分12分) 已知函数f(x)=x-3ax+3x+1。()设a=2,求f(x)的单调期间;()设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围。【解析】本题考查了导数在函数性质中的应用,主要考查了用导数研究函数的单调区间、极值及函数与方程的知识。(1)求出函数的导数,由导数大于0,可求得增区间,由导数小于0,可求得减区间。(2)求出函数的导数,在(2,3)内有极值,即为在(2,3)内有一个零点,即可根据,即可求出A的取值范围。16(2010年高考四川卷文科22)(本小题满分14分)w_w w. k#s5_u.c o*m设(且),g(x)是f(x)的反函数.()求;()当时,恒有成立,求t的取值范围;()当0a时,试比较f(1)+f(2)+f(n)与的大小,并说明理由.