1、人教版七年级数学上册第二章整式的加减章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有两个多项式:,当a取任意有理数时,请比较A与B的大小()ABCD以上结果均有可能2、若单项式am1b2与的和仍
2、是单项式,则nm的值是()A3B6C8D93、下列计算正确的是()A3a2b5abB5a22a23C7aa7a2D2a2b4a2b2a2b4、在中,是代数式的有()A5个B4个C3个D2个5、下列变形正确的是( )ABCD6、已知与的和是单项式,则等于()AB10C12D157、代数式的意义是( )A的平方与的和B与的平方的和C与两数的平方和D与的和的平方8、多项式a(bc)去括号的结果是()AabcBa+bcCa+b+cDab+c9、式子,0,a,中,下列结论正确的是()A有4个单项式,2个多项式B有3个单项式,3个多项式C有5个整式D以上答案均不对10、化简的结果是()ABCD第卷(非选择
3、题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一件商品的进价为a元,超市标价b元出售,后因季节原因超市将此商品打八折促销,如果促销后这件商品还有盈利,那么此时每件商品盈利_元(用含有a、b的代数式表示)2、已知一列数2,8,26,80,按此规律,则第n个数是_(用含n的代数式表示)3、若多项式为三次三项式,则的值为_4、若多项式是关于x,y的三次多项式,则_5、已知,则_三、解答题(5小题,每小题10分,共计50分)1、先化简再求值:,其中2、已知单项式的系数和次数分别是,求的值3、某同学做一道数学题,“已知两个多项式A、B,B2x2+3x4,试求A2B”这位同学把“A2B”
4、误看成“A+2B”,结果求出的答案为5x2+8x10请你替这位同学求出“A2B”的正确答案4、如图图案是用长度相同的火柴棒按一定规律拼搭而成,图案需8根火柴棒,图案需15根火柴棒,图案需15根火柴棒,(1)按此规律,图案需_根火柴棒;(2)用含n的代数式表示第n个图案需根火柴棒根数5、【做一做】列代数式(1)已知一个三位数的个位数字是a,十位数字是b,百位数字是c,则这个三位数可表示为 ;(2)某地区夏季高山的温度从山脚处开始每升高100米,降低0.7,若山脚温度是28,则比山脚高x米处的温度为 ;(3)已知某礼堂第1排有18个座位,往后每一排比前一排多2个座位则第n排共有座位数 个【数学思考
5、】(4)上面所列的代数式都属于我们所学习的整式中的 ;(5)请你任意写一个关于x的这种类型的数字系数的二次式 ;(6)用字母表示系数,写一个关于x的二次三项式,并注明字母系数应满足的条件 ;【问题解决】(7)若代数式3x|m|(m2)x+4是一个关于x的二次三项式,求m的值-参考答案-一、单选题1、C【解析】【分析】先求解 若 则若= 则=若 则从而可得答案.【详解】解: 故选:【考点】本题考查的是比较两个代数式的值的大小,整式的加减运算,掌握去括号,作差法比较两个数的大小是解题的关键.2、C【解析】【分析】首先可判断单项式am-1b2与a2bn是同类项,再由同类项的定义可得m、n的值,代入求
6、解即可【详解】解:单项式am-1b2与a2bn的和仍是单项式,单项式am-1b2与a2bn是同类项,m-1=2,n=2,m=3,n=2,nm=8故选C【考点】本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同3、D【解析】【分析】直接利用合并同类项法则分别分析得出答案【详解】A、3a+2b,无法计算,故此选项错误;B、5a2-2a2=3a2,故此选项错误;C、7a+a=8a,故此选项错误;D、2a2b-4a2b=-2a2b,正确故选D【考点】此题主要考查了合并同类项,正确掌握运算法则是解题关键4、A【解析】【分析】代数式是由数和字母组成,表示加、减、乘、除、乘方、开方等运算的式
7、子,或含有字母的数学表达式,注意不能含有=、等符号【详解】,含有“=”和“”,所以不是代数式,则是代数式的有其5个,故选:A【考点】考查了代数式的定义,掌握代数式的定义是本题的关键,注意含有=、等符号的不是代数式5、C【解析】【分析】根据去括号和添括号法则解答【详解】A、原式a2,故本选项变形错误B、原式a,故本选项变形错误C、原式(a1),故本选项变形正确D、原式(a1),故本选项变形错误故选:C【考点】本题主要考查了去括号与添括号,去括号法则是根据乘法分配律推出的;去括号时改变了式子的形式,但并没有改变式子的值;添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括
8、号里的各项都改变符号添括号与去括号可互相检验6、B【解析】【分析】由同类项的含义可得:,再求解,再代入代数式求值即可得到答案.【详解】解:因为与的和是单项式,所以它们是同类项,所以,解得所以故选:【考点】本题考查的是同类项的含义,一元一次方程组的解法,代数式的值,掌握同类项的概念是解题的关键.7、C【解析】【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来。叙述时,要求既要表明运算的顺序,又要说出运算的最终结果【详解】代数式的意义是a与b两数的平方的和故选:C【考点】此题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序8、D【解析】【分析】根据去括号
9、的法则:括号前是“”时,把括号和它前面的“”去掉,原括号里的各项都改变符号,进行计算即可【详解】 ,故选:D【考点】本题主要考查去括号,掌握去括号的法则是解题的关键9、A【解析】【分析】数与字母的乘积形式是单项式,单独一个数或一个字母是单项式,几个单项式的和是多项式【详解】解:是两个单项式的和,是多项式;是单项式;是3个单项式的和,是多项式:0,a是单项式;是单项式;不是整式,综上所述,单项式共有4个,多项式共有2个,整式共有6个,故选:A【考点】本题考查多项式、单项式的定义,是基础考点,掌握相关知识是解题关键10、B【解析】【分析】根据去括号法则,先去小括号,再去中括号,然后去大括号,即可求
10、解【详解】解:故选:B【考点】本题主要考查了去括号,熟练掌握去括号法则:括号前面是“+”号,去掉括号和括号前面的“+”号,括号里的各项都不改变符号;括号前面是“-”号,去掉括号和括号前面的“-”号,括号里的各项都改变符号是解题的关键二、填空题1、(0.8ba)【解析】【分析】根据“标价售价”用代数式表示出售价,再根据“售价进价利润”用代数式表示盈利【详解】解:根据题意得,每件商品盈利(0.8ba)元,故答案为:(0.8ba)【考点】考查了列代数式,解题关键是熟记“标价=售价,售价-进价=利润”2、3n1【解析】【详解】分析:根据观察等式,可发现规律,根据规律,可得答案详解:已知一列数2,8,2
11、6,80, 按此规律,则第n个数是 故答案为点睛:本题考查了数字的变化类,规律是第几个数就是3的几次方减13、【解析】【分析】由于多项式是关于x的三次三项式,所以| k+2|=3,k-10,根据以上两点可以确定k的值【详解】解:为三次三项式,| k+2|=3,k-10k=1或-5,k1,k=-5,故答案为:-5.【考点】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数4、0或8【解析】【分析】直接利用多项式的次数确定方法得出答案【详解】解:多项式是关于,的三次多项式,或,或,或8故答案为:0或8【考点】本题主要考查了多项式,正确掌握多项式
12、的次数确定方法是解题关键5、2【解析】【分析】将变形为即可计算出答案【详解】故答案为:2【考点】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识三、解答题1、,【解析】【分析】根据整式的加减运算法则化简原式,再代入求值【详解】解:原式,当时,原式【考点】本题考查整式的化简求值,解题的关键是掌握整式的加减运算法则2、-2【解析】【分析】根据单项式的系数是数字因数,次数是字母指数的和,可得a、b的值,根据代数式求值,可得答案【详解】解:由题意,得【考点】本题考查了单项式,利用单项式的次数系数得出a、b的值是解题关键3、3x24x+6【解析】【分析】先根据条件求出多项式A,然后将A和B代入
13、A-2B中即可得出答案.先根据A+2B和多项式B求出多项式A,化简得A=,再将A,B代入求解即可,即A-2B=.【详解】解:B2x2+3x4,A+2B5x2+8x10,A5x2+8x102(2x2+3x4)5x2+8x104x26x+8x2+2x2,A2Bx2+2x22(2x2+3x4)x2+2x24x26x+83x24x+6【考点】本题的考点是整式的加减,易错点是化简时出现错误;方法是先根据这个同学的结果算出多项式A,再将多项式A,B代入求解.4、 (1)50(2)7n+1【解析】【分析】(1)根据图案、中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,可得出图案需
14、火柴棒:8+76=50根;(2)根据(1)的规律,可知第n个图案需火柴棒8+7(n-1)=7n+1根(1)解:图案需火柴棒:8根;图案需火柴棒:8+7=15根;图案需火柴棒:8+7+7=22根;图案需火柴棒:8+76=50根; 故答案为:50;(2)解:由(1)中规律:图案n需火柴棒:8+7(n-1)=7n+1根;故答案为:7n+1;【考点】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化5、(1)100c+10b+c;(2)(0.007x+28);(3)(2n+16);(4)多项式;(5) x2+1;(6)ax2+bx
15、+c(a、b、c均不为0);(7)-2【解析】【分析】(1)根据题意,用含a、b、c的代数式表示出这个三位数即可;(2)根据题意,用含x的代数式表示出比山脚高x米处的温度即可;(3)根据题意,用含n的代数式表示出第n排的座位数即可;(4)根据前三个小题的结果判断即可;(5)根据整式的相关概念按要求写出即可;(6)根据多项式的相关概念按要求写出即可;(7)根据多项式的相关概念可以得到关于m的方程,从而可以求得m的值【详解】解:(1)由题意可得,这个三位数可表示为100c+10b+a,故答案为:100c+10b+c;(2)由题意可得,比山脚高x米处的温度为:280.70.007x+28,故答案为:(0.007x+28);(3)由题意可得,第n排共有座位18+2(n1)18+2n22n+16,故答案为:(2n+16);(4)上面所列的代数式都属于我们所学习的整式中的多项式,故答案为:多项式;(5)关于x的这种类型的数字系数的二次式可以是:x2+1,故答案为:x2+1;(6)由题意可得,满足条件的多项式可以是:ax2+bx+c(a、b、c均不为0),故答案为:ax2+bx+c(a、b、c均不为0);(7)代数式3x|m|(m2)x+4是一个关于x的二次三项式,|m|2且m20,解得:m2,即m的值是2【考点】本题考查整式的相关概念以及列代数式,解答本题的关键是明确题意,列出相应的代数式