收藏 分享(赏)

2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx

上传人:a**** 文档编号:643333 上传时间:2025-12-12 格式:DOCX 页数:24 大小:335.58KB
下载 相关 举报
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第1页
第1页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第2页
第2页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第3页
第3页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第4页
第4页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第5页
第5页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第6页
第6页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第7页
第7页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第8页
第8页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第9页
第9页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第10页
第10页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第11页
第11页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第12页
第12页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第13页
第13页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第14页
第14页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第15页
第15页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第16页
第16页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第17页
第17页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第18页
第18页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第19页
第19页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第20页
第20页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第21页
第21页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第22页
第22页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第23页
第23页 / 共24页
2022-2023学年度北师大版八年级数学上册第一章勾股定理专题测评试题(详解版).docx_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、北师大版八年级数学上册第一章勾股定理专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数:3、4、54、5、62.5、6、6.58、15、17,其中是勾股数的有()A4组B3组C2组D1组2

2、、如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的外壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是() A厘米B10厘米C厘米D8厘米3、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m,当它把绳子的下端拉开4 m后,发现下端刚好接触地面,则旗杆的高为()A7 mB7.5 mC8 mD9 m4、如图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形的两直角边分别是a、b,且,大正方形的面积是9,则小正方形的面积是()A3B4C5D65、我图古代数学著作

3、九章算术中有这样一个问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?(注:丈、尺是长度单位,1丈=10尺 )意思为:如图,有一个边长为1丈的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的岸边,它的顶端恰好碰到池边的水面则这根芦苇的长度是()A5尺B10尺C12尺D13尺6、如图,P是等边三角形内的一点,且,以为边在外作,连接,则以下结论中不正确的是()ABCD7、如图,正方形ABCD中,AB12,将ADE沿AE对折至AEF,延长EF交BC于点G,G刚好是BC边的中点,则ED的长是()A2B3C4D58、在直线l上依次摆放着七个正方形,

4、已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A4B5C6D79、一个直角三角形的两条直角边边长分别为6和8,则斜边上的高为()A4.5B4.6C4.8D510、如图,在ABC中,AB6,AC9,ADBC于D,M为AD上任一点,则MC2MB2等于()A29B32C36D45第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,数轴上点A所表示的数为_2、(2011贵州安顺,16,4分)如图,在RtABC中,C=90,BC=6cm,AC=8cm,按图中所示方法将BCD沿BD折叠,使点C

5、落在AB边的C点,那么ADC的面积是 3、如图,在RtABC中,ACB=90,AC=3,BC=4,点D在AB上,AD=AC,AFCD交CD于点E,交CB于点F,则CF的长是_.4、如图,铁路MN和公路PQ在O点处交汇,公路PQ上A处点距离O点240米,距离MN 120米,如果火车行驶时,周围两百米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向,以144千米/时的速度行驶时,A处受噪音影响的时间是_s5、如图,在ABC中,ACB=90,CDAB于点DE为线段BD上一点,连结CE,将边BC沿CE折叠,使点B的对称点B落在CD的延长线上若AB=10,BC=8,则ACE的面积为_三、解答题(5小

6、题,每小题10分,共计50分)1、如图,在44的正方形网格中,每个小正方形的边长均为1(1)请在所给网格中画一个边长分别为,的三角形;(2)此三角形的面积是 2、如图,某海岸线MN的方向为北偏东75,甲,乙两船分别向海岛C运送物资,甲船从港口A处沿北偏东45方向航行,乙船从港口B处沿北偏东30方向航行,已知港口B到海岛C的距离为30海里,求港口A到海岛C的距离3、2020年春季“新冠肺炎”在武汉全面爆发,蔓延全国,危及到人民生命安全,为了积极响应国家防控政策,双流区某镇政府采用了移动宣讲的形式进行宣传防控措施,如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为600米,假设宣讲车周围1000

7、米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?4、如图,在四边形中,于,(1)求证:;(2)若,求四边形的面积5、已知:整式A(n21)2+(2n)2,整式B0尝试化简整式A发现AB2求整式B联想:由上可知,B2(n21)2+(2n)2,当n1时,n21,2n,B为直角三角形的三边长,如图,填写下表中B的值;直角三角形三边n212nB勾股数组8勾股数组35-参考答案-一、单选题1、C【解析】【详解】解:32+42=52,符合勾股数的定义;42+5262,不符合勾股数

8、的定义;2.5和6.5不是正整数,不符合勾股数的定义;82+152=172,符合勾股数的定义,是勾股数的有:,共2组,故选:C2、B【解析】【分析】把圆柱沿着点A所在母线展开,把圆柱上最短距离转化为将军饮马河型最短问题求解即可.【详解】把圆柱沿着点A所在母线展开,如图所示,作点A的对称点B,连接PB,则PB为所求,根据题意,得PC=8,BC=6,根据勾股定理,得PB=10,故选B.【考点】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.3、B【解析】【分析】根据题意,画出图形,设旗杆AB=x米,则AC=(x+1)米,在RtABC中,根据勾股定

9、理的方程(x+1)2=x2+42,解方程求得x的值即可.【详解】如图所示:设旗杆AB=x米,则AC=(x+1)米,在RtABC中,AC2=AB2+BC2,即(x+1)2=x2+42,解得:x=7.5故选B【考点】本题考查了勾股定理的应用,解决本题的基本思路是是画出示意图,利用勾股定理列方程求解4、A【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知(a+b)2=15,大正方形的面积为9,可以得出直角三角形的面积,进而求出答案【详解】解:(a+b)2=15,a2+2ab+b2=15,大正方形的面积为:a2+b2=9,2ab=159=6,即ab=3,直角三角

10、形的面积为:,小正方形的面积为:,故选:A【考点】此题主要考查了完全平方公式及勾股定理的应用,熟练应用完全平方公式及勾股定理是解题关键5、D【解析】【分析】依题意,芦苇的长度为直角三角形的斜边,水深为一直角边,另一直角边为5尺,由勾股定理即可列出方程,进而得到答案【详解】解:设水深x尺,则芦苇的长度为(x+1)尺,依题意,由勾股定理,得:,解得,所以芦苇的长度为13尺故选D【考点】本题考查勾股定理的应用,将题目描述问题转化成直角三角形求边长的问题是解题的关键6、C【解析】【分析】根据ABC是等边三角形,得出ABC=60,根据BQCBPA,得出CBQ=ABP,PB=QB=4,PA=QC=3,BP

11、A=BQC,求出PBQ=60,即可判断A;根据勾股定理的逆定理即可判断B;根据BPQ是等边三角形,PCQ是直角三角形即可判断D;求出APC=150-QPC,和PC2QC,可得QPC30,即可判断C【详解】解:ABC是等边三角形,ABC=60,BQCBPA,CBQ=ABP,PB=QB=4,PA=QC=3,BPA=BQC,PBQ=PBC+CBQ=PBC+ABP=ABC=60,所以A正确,不符合题意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,PQ2+QC2=PC2,PQC=90,所以B正确,不符合题意;PB=QB=4,PBQ=60,BPQ是等边三角形,BPQ=60,APB

12、=BQC=BQP+PQC=60+90=150,所以D正确,不符合题意;APC=360-150-60-QPC=150-QPC,PC=5,QC=PA=3,PC2QC,PQC=90,QPC30,APC120所以C不正确,符合题意故选:C【考点】本题是三角形综合题,考查了全等三角形的性质、等边三角形的性质、勾股定理的逆定理,解决本题的关键是综合应用以上知识7、C【解析】【分析】连接AG,证明ABGAFG,得到FGBG,ADE沿AE对折至AEF,则EFDE,设DEx,则EFx,EC12x,则RtEGC中根据勾股定理列方程可求出DE的值【详解】如图,连接AG,四边形ABCD是正方形,ABCD90,ABBC

13、CDAD12ADE沿AE对折至AEF,EFDE,AFAD,AFAD,ABAD,AFAB,又AG是公共边,ABGAFG(HL),G刚好是BC边的中点,BGFG, 设DEx,则EFx,EC12x,在RtEGC中,根据勾股定理列方程:62(12x)2(x6)2解得:x4所以ED的长是4,答案选C【考点】本题考查了正方形和全等三角形的综合知识,根据勾股定理列方程是本题的解题关键8、A【解析】【详解】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A【考点】勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方

14、和这里,边的平方的几何意义就是以该边为边的正方形的面积9、C【解析】【分析】根据勾股定理求出斜边的长,再根据面积法求出斜边的高【详解】解:设斜边长为c,高为h由勾股定理可得: c2=62+82 ,则 c=10 ,直角三角形面积 S=68=ch ,可得 h=4.8 ,故选:C【考点】本题考查了勾股定理,利用勾股定理求直角三角形的边长和利用面积法求直角三角形的高是解决此类题的关键10、D【解析】【分析】在RtABD及RtADC中可分别表示出BD2及CD2,在RtBDM及RtCDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果【详解】解:在RtABD和RtADC中,B

15、D2AB2AD2,CD2AC2AD2,在RtBDM和RtCDM中,BM2BD2MD2AB2AD2MD2,MC2CD2MD2AC2AD2MD2,MC2MB2(AC2AD2MD2)(AB2AD2MD2)AC2AB245故选:D【考点】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握二、填空题1、【解析】【分析】根据数轴上点的特点和相关线段的长,结合勾股定理求出斜边长,即可求出-1和A之间的线段的长,即可知A所表示的数【详解】图中直角三角形的两直角边为1,2,所以斜边长为,那么-1和A之间

16、的距离为,那么数轴上点A所表示的数为:故答案为:【考点】本题考查实数与数轴之间的对应关系以及勾股定理,利用勾股定理求出直角三角形的斜边的长是解答本题的关键2、6cm2【解析】【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC,BC=BC=6cm,则AC=4cm,设DC=xcm,在RtADC中根据勾股定理列方程求得x的值,然后根据三角形的面积公式计算即可【详解】C=90,BC=6cm,AC=8cm,AB=10cm,将BCD沿BD折叠,使点C落在AB边的C点,BCDBCD,C=BCD=90,DC=DC,BC=BC=6cm,AC=AB-BC=4cm,设DC=xcm,则AD=(8

17、-x)cm,在RtADC中,AD2=AC2+CD2,即(8-x)2=x2+42,解得x=3,ACD=90,ADC的面积ACCD=43=6(cm2)考点:折叠的性质,勾股定理点评:折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,对应点的连线段被折痕垂直平分3、1.5【解析】【分析】连接DF,由勾股定理求出AB=5,由等腰三角形的性质得出CAF =DAF,由SAS证明ADFACF,得出CF=DF,ADF=ACF=BDF=90,设CF=DF=x,则BF=4-x,在RtBDF中,由勾股定理得出方程,解方程即可【详解】连接DF,如图所示:在RtABC中,ACB=90,AC=3,BC=4,由勾

18、股定理求得AB=5,AD=AC=3,AFCD,CAF =DAF,BD=AB-AD=2, 在ADF和ACF中, ADFACF(SAS),ADF=ACF=90,CF=DF,BDF=90,设CF=DF=x,则BF=4-x,在RtBDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;CF=1.5;故答案为1.5【考点】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质,证明ADFACF得到CF=DF,在RtBDF中利用勾股定理列方程是解决问题的关键4、8【解析】【分析】过点A作ACON,根据题意可知AC的长与200米相比较,发现受到影响,然后过点A作A

19、D=AB=200米,求出BD的长即可得出居民楼受噪音影响的时间【详解】解:如图:过点A作ACON,AB=AD=200米,公路PQ上A处点距离O点240米,距离MN 120米,AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,AB=200米,AC=120米,由勾股定理得:BC=160米,CD=160米,即BD=320米,144千米/小时=40米/秒,影响时间应是:32040=8秒故答案为:8【考点】本题考查勾股定理的应用根据题意构建直角三角形是解题关键5、【解析】【分析】求出AC=6,面积法求出CD=,在RtBCD中,用勾股定理得BD=,即可得BD=BC-CD=,设BE=BE

20、=x,则DE=BD-BE=-x,在RtBDE中,用勾股定理可得BE=4,即可得到答案【详解】解:ACB=90,AB=10,BC=8,AC=6,CDAB,2SABC=ABCD=ACBC,CD=,在RtBCD中,BD=,将边BC沿CE折叠,使点B的对称点B落在CD的延长线上,BC=BC=8,BE=BE,BD=BC-CD=8-=,设BE=BE=x,则DE=BD-BE=-x,在RtBDE中,BD2+DE2=BE2,()2+(-x)2=x2,解得x=4,BE=4,AE=AB-BE=6,ACE的面积为AECD=6=,故答案为:【考点】本题考查直角三角形中的折叠问题,解题的关键是掌握折叠的性质,熟练运用勾股

21、定理三、解答题1、(1)画图见解析;(2)【解析】【分析】(1)利用勾股定理在网格中确定再顺次连接即可;(2)利用长方形的面积减去周围三个三角形的面积即可.【详解】解:(1)如图,即为所求作的三角形,其中: (2) 故答案为:【考点】本题考查的是网格中作三角形,勾股定理的应用,网格三角形的面积的计算,掌握“利用勾股定理求解网格三角形的边长”是解本题的关键.2、【解析】【分析】过点C作CDAM垂足为D,设CD=x,根据直角三角形的性质求可得AC=2x、BD=BC=x,再利用勾股定理可求得x,进而求得AC的长【详解】解:过点C作CDAM垂足为D,CAD=75-45=30,CBD=75-30=30,

22、设CD=x在RtACD中,CAD=75-45=30AC=2x在RtBCD中,CBD=45,BC=30BD=BC=x,解得x=AC=2x=答:港口A到海岛C的距离是海里【考点】本题主要考查了直角三角形的性质、勾股定理等知识点,掌握直角三角形的边角关系是正确解答的前提,作垂线构造直角三角形是解决问题的关键3、(1)村庄能听到宣传,理由见解析;(2)村庄总共能听到8分钟的宣传【解析】【分析】(1)直接比较村庄到公路的距离和广播宣传距离即可;(2)过点作于点,利用勾股定理运算出广播影响村庄的路程,再除以速度即可得到时间【详解】解:(1)村庄能听到宣传,理由:村庄到公路的距离为600米1000米,村庄能

23、听到宣传;(2)如图:过点作于点,假设当宣讲车行驶到点开始影响村庄,行驶点结束对村庄的影响,则米,米,(米),米,影响村庄的时间为:(分钟),村庄总共能听到8分钟的宣传【考点】本题主要考查了垂线的性质,勾股定理,仔细审题获取相关信息合理作出图形是解题的关键4、(1)详见解析;(2)S四边形ABCD=56【解析】【分析】(1)由等角的余角相等可得DAC=ABE,再根据题意可得RtBAERtADC,即可证;(2)根据勾股定理算出AC,由全等可得BE=AC,再算出ACD的面积和ABC的面积相加即可【详解】解:(1)BEAC,ABE+BAE=90,BAD=90,BAE+DAC=90,DAC=ABE,又

24、AB=AD,BEA=ACD,RtBAERtADC(AAS),BE=AC(2)AB=AD=10,CD=6,ACD=90,RtBAERtADC,BE=AC=8,【考点】本题考查三角形全等的判定和性质,三角形面积,关键在于牢记基础知识并灵活使用5、A(n2+1)2,Bn2+1,15,17;12,37【解析】【分析】先根据整式的混合运算法则求出A,进而求出B,再把n的值代入即可解答【详解】A(n21)2+(2n)2n42n2+1+4n2n4+2n2+1(n2+1)2,AB2,B0,Bn2+1,当2n8时,n4,n2142115,n2+142+117;当n2135时,n6(负值舍去),2n2612,n2+137直角三角形三边n212nB勾股数组15817勾股数组351237故答案为:15,17;12,37【考点】本题考查了勾股数的定义及勾股定理的逆定理:已知ABC的三边满足a2+b2=c2,则ABC是直角三角形

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1