ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:69.11KB ,
资源ID:643048      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-643048-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新教材2022版高考人教A版数学一轮复习课时规范练26 平面向量的数量积与平面向量的应用 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

新教材2022版高考人教A版数学一轮复习课时规范练26 平面向量的数量积与平面向量的应用 WORD版含解析.docx

1、课时规范练26平面向量的数量积与平面向量的应用基础巩固组1.(2020山东鄄城一中高三月考)在梯形ABCD中,ABDC,ADAB,AD=2,则BCAD=()A.-1B.1C.2D.22.(2019四川广元高三期末)在ABC中,若(CA+CB)BA=0,则ABC是()A.正三角形B.直角三角形C.等腰三角形D.钝角三角形3.(2020黑龙江哈师大附中高三调研)已知向量a=(-2,m),b=(1,-2),c=(m+1,5),若ab,则a与b+c的夹角为()A.4B.3C.23D.344.(2020河南南阳中学高三月考)已知向量a=(1,2),A(6,4),B(4,3),b为向量AB在向量a上的投影

2、向量,则|b|=()A.455B.1C.5D.45.在ABC中,若AB=(1,2),AC=(-x,2x)(x0),则当BC最小时,ACB=()A.90B.60C.45D.306.(多选)(2020山东高考预测卷)已知向量a=(1,2),b=(m,1)(m0,当x=35时,ymin=165,此时BC最小,CA=35,-65,CB=85,45,CACB=3585-6545=0,CACB,即ACB=90,故选A.6.AC将a=(1,2),b=(m,1)代入b(a+b)=3,得(m,1)(1+m,3)=3,得m2+m=0,解得m=-1或m=0(舍去),所以b=(-1,1),所以|b|=(-1)2+12

3、=2,故A正确;因为2a+b=(1,5),a+2b=(-1,4),14-(-1)5=90,所以2a+b与a+2b不平行,故B错误;设向量2a-b与a-2b的夹角为,因为2a-b=(3,3),a-2b=(3,0),所以cos=(2a-b)(a-2b)|2a-b|a-2b|=22,所以=4,故C正确;向量a在向量b上的投影向量的模为ab|b|=12=22,故D错误.故选AC.7.BD由于ABC内接于以O为圆心,1为半径的圆,且3OA+4OB+5OC=0,所以3OA+4OB=-5OC,两边平方并化简得25+24OAOB=25,解得OAOB=0;3OA+5OC=-4OB,两边平方并化简得34+30OA

4、OC=16,解得OAOC=-35;4OB+5OC=-3OA,两边平方并化简得41+40OBOC=9,解得OBOC=-45.所以BOC90,故A错误;AOB=90,故B正确;OBCA=OB(OA-OC)=OBOA-OBOC=45,故C错误;OCAB=OC(OB-OA)=OCOB-OCOA=-45-35=-15,故D正确.故选BD.8.8BD=3DA,CD-CB=3(CA-CD),化简得CD=34CA+14CB.同理可得CE=-14CA+54CB.C=2,CACB=0,CDCA+CECA=CA(CD+CE)=CA12CA+32CB=12CA2+32CACB=12|CA|2=8.9.3422设a与b

5、的夹角为,0,则|a-2b|=(a-2b)2=|a|2-2|a|2b|cos+|2b|2=13,将|a|=1,|b|=2代入上式,化简可得1-42cos+8=13,解得cos=-22.0,=34,即a与b的夹角为34.根据向量投影的定义可得,a在b上的投影向量的模为|a|cos|=22.10.解(1)设向量AB+2AC与向量2AB+AC的夹角为,则cos=(AB+2AC)(2AB+AC)|AB+2AC|2AB+AC|,令|AB|=|AC|=a,则cos=2a2+2a25a5a=45.(2)|AB|=|AC|=2,|AM|=1.设|OA|=x(0x1),则|OM|=1-x.而OB+OC=2OM,

6、OAOB+OCOA=OA(OB+OC)=2OAOM=2|OA|OM|cos=2x2-2x=2x-122-12.当x=12时,OAOB+OCOA取得最小值,最小值是-12.11.解(1)b+c=(cos-1,sin),则|b+c|2=(cos-1)2+sin2=2(1-cos).因为-1cos1,所以0|b+c|24,即0|b+c|2.当cos=-1时,有|b+c|=2,所以向量b+c的模的最大值为2.(2)若=4,则a=22,22.又由b=(cos,sin),c=(-1,0)得a(b+c)=22,22(cos-1,sin)=22cos+22sin-22.因为a(b+c),所以a(b+c)=0,

7、即cos+sin=1,所以sin=1-cos,平方后化简得cos(cos-1)=0,解得cos=0或cos=1.经检验cos=0或cos=1即为所求.12.BC由题可知,(e1+e2)2=2+2e1e2+1=(+e1e2)2+1-(e1e2)21-(e1e2)2.e1,e2是两个单位向量,且|e1+e2|的最小值为32,(e1+e2)2的最小值为34,则1-(e1e2)2=34,解得cos=12,e1与e2的夹角为3或23,|e1+e2|2=1+2e1e2+1=2212=1或3,|e1+e2|=1或3.故选BC.13.AC对于A,设D为BC的中点,由于OA=-(OB+OC)=-2OD,所以O为

8、BC边上中线的三等分点(靠近点D),所以O为ABC的重心,故A正确;对于B,向量AC|AC|,AB|AB|分别表示与AC,AB方向相同的单位向量,设为AC和AB,则它们的差是向量BC,则当OAAC|AC|-AB|AB|=0,即OABC时,点O在BAC的平分线上,同理由OBBC|BC|-BA|BA|=0,知点O在ABC的平分线上,故O为ABC的内心,故B错误;对于C,OA+OB是以OA,OB为邻边的平行四边形的一条对角线,而AB是该平行四边形的另一条对角线,AB(OA+OB)=0表示这个平行四边形是菱形,即OA=OB,同理有OB=OC,于是O为ABC的外心,故C正确;对于D,由OAOB=OBOC

9、得OAOB-OBOC=0,OB(OA-OC)=0,即OBCA=0,OBCA.同理可证OACB,OCAB.OBCA,OACB,OCAB,即O是ABC的垂心,故D错误.故选AC.14.C联立y=x+m,x2+y2=1,消y可得2x2+2mx+m2-1=0.由题意知=-2m2+80,解得-2m2.设A(x1,y1),B(x2,y2),则x1+x2=-m,x1x2=m2-12,y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2,AO=(-x1,-y1),AB=(x2-x1,y2-y1).AOAB=32,AOAB=x12-x1x2+y12-y1y2=1-m2-12-m2-12+m2-m

10、2=2-m2=32,解得m=22.故选C.15.AH为边BC上的高,ABAH=ACAH=|AH|2,ACAH|AH|=|AH|2|AH|=|AH|=csinB,正确;BC(AC-AB)=BCBC=a2=b2+c2-2bccosA,正确;AHAC=AH2,正确;AH(AB+BC)=AHAC=|AH|2=AHAB,正确.16.140,1ABC为等腰直角三角形,CO为斜边上的高,则CO为边AB上的中线,所以AC=BC=2,AO=BO=CO=1.当P为线段OC的中点时,在ACO中,AP为边CO上的中线,则AP=12(AC+AO),所以APOP=12(AC+AO)OP=12(ACOP+AOOP)=12|

11、AC|OP|cos45+0=1221222=14.当P为线段OC上的动点时,设OP=OC,01,APOP=(AC+CP)OP=ACOP+CPOP=OCAC-(1-)OC(OC)=1222-(1-)=-+2=20,1,所以APOP的取值范围为0,1.17.D设c=(x,y),a=(2,0),b=(1,3),c-a-b=(x-3,y-3),故|c-a-b|=(x-3)2+(y-3)2=3,即(x-3)2+(y-3)2=3,将c的起点放到坐标原点,则终点在以(3,3)为圆心,3为半径的圆上.|c|的最大值即圆心到原点的距离加半径,即9+3+3=33,故选D.18.解(1)f(x)=(a+b)a-2=

12、|a|2+ab-2=cos2x+1+3sinxcosx+12-2=12(cos2x+1)+1+32sin2x-32=12cos2x+32sin2x=sin2x+6,f(x)的最小正周期T=22=.由2k-22x+62k+2(kZ),得k-3xk+6(kZ),f(x)的单调递增区间为k-3,k+6(kZ).(2)由f(A)=sin2A+6=12,得2A+6=6+2k或2A+6=56+2k(kZ),又0A,A=3.b,a,c成等差数列,2a=b+c.ABAC=bccosA=12bc=9,bc=18.由余弦定理,得cosA=(b+c)2-a22bc-1=4a2-a236-1=a212-1=12,a=32(负值舍去).

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3