1、八年级数学上册第十四章整式的乘法与因式分解章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知m2n2nm2,则的值是()A1B0C1D2、把多项式分解因式正确的是()ABCD3、下列各式变形中,
2、是因式分解的是()ABCD4、已知是一个完全平方式,那么m为()AB CD5、下面计算正确的是()ABCD6、下列各式由左到右的变形中,属于分解因式的是()Aa(mn)amanBa2b2c2(ab)(ab)c2C10x25x5x(2x1)Dx2168x(x4)(x4)8x7、关于的多项式的最小值为()ABCD8、下列运算正确的是()ABCD9、下列运算正确的是()Aa2a3a6Ba2a2a4C(ab)2a2b2D(a)3a2a510、计算(0.25)2020(4)2019的结果是()A4B4CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:_2、若,则代数式
3、的值等于_3、已知,则_4、计算:_5、已知,则_三、解答题(5小题,每小题10分,共计50分)1、已知:x2y2=12,x+y=3,求2x22xy的值2、计算(1)计算:(2)解不等式组:3、先化简,再求值:(x2y)(x+2y)+(x+y)(x4y),其中x1,y24、先化简,再求值:,其中,5、第一步:阅读材料,掌握知识要把多项式分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得这时,由于中又有公因式,于是可提公因式,从而得到,因此有这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利
4、用分组分解法来因式分解第二步:理解知识,尝试填空:(1) 第三步:应用知识,因式分解:(2) x2-(p+q)x+pq;(3)第四步:提炼思想,拓展应用(4)已知三角形的三边长分别是a,b,c,且满足a2+2b2+c2=2b(a+c),试判断这个三角形的形状,并说明理由-参考答案-一、单选题1、C【解析】【详解】分析:首先进行移项,然后转化为两个完全平方式,根据非负数的性质求出m和n的值,然后代入所求的代数式得出答案详解:,解得:m=2,n=2,故选C点睛:本题主要考查的是非负数的性质以及代数式的求值,属于中等难度的题型将代数式转化为两个完全平方式是解决这个问题的关键2、B【解析】【详解】利用
5、公式法分解因式的要点,根据平方差公式:,分解因式为:.故选B.3、D【解析】【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案【详解】解:A、等式的右边不是整式的积的形式,故A错误;B、等式右边分母含有字母不是因式分解,故B错误;C、等式的右边不是整式的积的形式,故C错误;D、是因式分解,故D正确;故选D【考点】本题考查了因式分解的定义,因式分解是把一个多项式转化成几个整式乘积的形式4、C【解析】【分析】根据完全平方公式即可得【详解】由题意得:,则,因此,故选:C【考点】本题考查了完全平方公式,熟记公式是解题关键5、C【解析】【分析】根据合并同类项法则,积的乘方、同底数幂乘法
6、法则逐一判断即可得答案.【详解】A.2a和3b不是同类项,不能合并,故该选项计算错误,不符合题意,B.a2和a3不是同类项,不能合并,故该选项计算错误,不符合题意,C.(-2a3b2)3=-8a9b6,故该选项计算正确,符合题意,D.a3a2=a5,故该选项计算错误,不符合题意,故选C.【考点】本题考查整式的运算,熟练掌握合并同类项法则、积的乘方及同底数幂乘法法则是解题关键.6、C【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案【详解】A、是整式的乘法,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、把一个多项式化为几个整式的积的
7、形式,故此选项符合题意;D、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;故选:C【考点】本题考查因式分解,熟练掌握因式分解的定义及其特征是解答的关键7、A【解析】【分析】利用完全平方公式对代数式变形,再运用非负性求解即可【详解】解:原式,原式1,原式的最小值为1,故选A【考点】本题考查完全平方公式的变形,以及平方的非负性,灵活运用公式是关键8、D【解析】【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案【详解】解:A、,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,正确;故选:D【考点】本题主要考查了幂的乘方运算
8、法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键9、D【解析】【分析】根据完全平方公式、同底数幂的乘法,即可解答【详解】A. 根据同底数幂的乘法计算得:,选项错误;B. 根据合并同类项计算得:,选项错误;C. 根据完全平方公式计算得:,选项错误;D. 根据同底数幂的乘法计算得:,选项正确;故选:D【考点】本题考查了完全平方公式、同底数幂的乘法,解决本题的关键是熟记完全平方公式10、C【解析】【分析】直接利用积的乘方运算法则将原式变形得出答案【详解】直接利用积的乘方运算法则将原式变形得出答案解:(0.25)2020(4)2019(0.254)2019(
9、0.25)0.25故选:C【考点】此题主要考查了积的乘方运算法则,正确将原式变形是解题关键二、填空题1、5(m2)2【解析】【分析】先提取公因式,再用完全平方公式分解因式即可【详解】解:5(m24m+4)5(m2)2故答案为:5(m2)2【考点】本题考查了提公因式法与公式法的综合运用,掌握a22ab+b2(ab)2是解题的关键2、9【解析】【分析】先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解【详解】解:,=9故答案为:9【考点】本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键3、18【解析】【分析】本题利用同底
10、数幂的乘法公式:和逆用幂的乘方公式:,将所求代数式进行适当变形,即可求出答案【详解】解:故答案为:18【考点】本题主要考查整式乘法的计算,牢记整式乘法的公式,能够根据题目对式子进行适当变形,是解决本题的关键4、【解析】【分析】根据同底数幂的乘法法则解答即可【详解】解:故答案为:【考点】本题考查了同底数幂的乘法,属于基础题目,熟练掌握运算法则是解题的关键5、【解析】【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得的值,进而代入代数式即可求解【详解】解:,即,故答案为:【考点】本题考查了因式分解的应用,掌握完全平方公式是解题的关键三、解答题1、2x22xy=28【解析】【分析】先
11、求出xy=4,进而求出2x=7,而2x22xy=2x(xy),代入即可得出结论【详解】x2y2=12,(x+y)(xy)=12,x+y=3,xy=4,+得,2x=7,2x22xy=2x(xy)=74=28【考点】本题考查了因式分解的应用,代数值求值,二元一次方程组的特殊解法等,求出x-y=4是解本题的关键.2、 (1)(2)【解析】【分析】(1)根据平方差公式和单项式乘多项式展开,合并同类项即可得出答案;(2)分别解这两个不等式,根据不等式解集的规律即可得出答案(1)解:原式;(2)解:,解不等式,得,解不等式,得,所以原不等式组的解是【考点】本题考查了整式的混合运算,解一元一次不等式组,掌握
12、同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键3、2x23xy8y2,-24【解析】【分析】直接利用乘法公式以及多项式乘多项式计算,再合并同类项,把已知数据代入即可求出得出答案【详解】解:原式x24y2+x24xy+xy4y22x23xy8y2,当x1,y2时,原式21231(2)8(2)22+63224【考点】此题主要考查整式的化简求值,解题的关键是熟知乘法公式以及多项式乘多项式运算法则4、,【解析】【分析】利用平方差公式与多项式乘法法则进行化简,再代值计算【详解】解:原式,将,代入式中得:原式【考点】本题考查多项式乘法与平方差公式,熟练掌握相关运算法则是解题的关键5、(1)(2)(3)(4)等边三角形,理由见详解【解析】【分析】(1)如果把一个多项式各项分组并提出公因式后,它们的另一个因式刚好相同,那么这个多项式即可利用分组分解法来因式分解,据此即可求解;(2)先展开(pq)x,再利用分组分解法来因式分解,据此即可求解;(3)直接利用分组分解法来因式分解即可求解;(4)根据所给等式,先移项,再利用完全平方公式和等边三角形的判定求证即可【详解】解:(1)(2)(3)(4)等边三角形,理由如下:即这个三角形是等边三角形【考点】本题考查因式分解提公因式法,因式分解分组分解法,完全平方公式,等边三角形的判定,解题的关键是读懂材料并熟知因式分解的方法