ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:3.60MB ,
资源ID:642141      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-642141-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2014届高考数学(浙江专用)一轮复习学案:第四章三角函数、解三角形4.2同角三角函数的基本关系及三角函数的诱导公式 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2014届高考数学(浙江专用)一轮复习学案:第四章三角函数、解三角形4.2同角三角函数的基本关系及三角函数的诱导公式 WORD版含解析.doc

1、4.2同角三角函数的基本关系及三角函数的诱导公式考纲要求1理解同角三角函数的基本关系式:sin2cos21,tan .2能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式1同角三角函数的基本关系式(1)平方关系:_;(2)商数关系:_.2诱导公式组数一二三四五六角2k(kZ)正弦_余弦_正切_口诀函数名不变符号看象限函数名改变符号看象限即k2(kZ),的三角函数值,等于的同名函数值,前面加上一个把看成_时原函数值的符号;的正弦(余弦)函数值,分别等于的余弦(正弦)函数值,前面加上一个把看成锐角时原函数值的符号3特殊角的三角函数值角030456090120150180270角的弧度数

2、_sin _cos _tan _1已知cos(),且是第四象限角,则sin ()A BC D2已知sin x2cos x,则sin2x1()A B C D3已知是第四象限角,tan ,则sin 等于()A B C D4已知5,则sin2sin cos 的值是_一、同角三角函数基本关系式的应用【例11】已知tan ,则cos 2sin2的值为_【例12】已知是三角形的内角,且sin cos .(1)求tan 的值;(2)把用tan 表示出来,并求其值方法提炼1利用sin2cos21可以实现角的正弦、余弦的互化,利用tan (k,kZ)可以实现角的弦切互化2注意公式逆用及变形应用:1sin2cos

3、2,sin21cos2,cos21sin2.3求值或化简中一定要注意角的范围请做演练巩固提升1,2二、诱导公式的应用【例21】化简:_.【例22】化简.【例23】已知cos(),且是第四象限角,计算:(nZ)方法提炼利用诱导公式化简求值时的原则为:1“负化正”,运用公式三将任意负角的三角函数化为任意正角的三角函数2“大化小”,利用公式一将大于360的角的三角函数化为0到360的三角函数,利用公式二将大于180的角的三角函数化为0到180的三角函数3“小化锐”,利用公式六将大于90的角化为0到90的角的三角函数4“锐求值”,得到0到90的三角函数后,若是特殊角直接求得,若是非特殊角可由计算器求得

4、提醒:诱导公式中“符号看象限”是指把从形式上看作锐角,从而2k(kZ),分别是第一,三,四,二,一,二象限的角请做演练巩固提升3三、sin xcos x与方程思想【例3】已知sin cos ,求:(1)sin cos ;(2)sin3cos3;(3)sin4cos4.方法提炼1已知asin xbcos xc可与sin2xcos2x1联立,求得sin x,cos x,一般此法不常用,原因是计算麻烦2sin xcos x,sin xcos x,sin xcos x之间的关系为:(sin xcos x)212sin xcos x,(sin xcos x)212sin xcos x,(sin xcos

5、 x)2(sin xcos x)22.因此已知上述三个代数式中的任意一个代数式的值可求其余两个代数式的值请做演练巩固提升4关于诱导公式主观题的规范解答【典例】(12分)(2012山东肥城模拟)已知sin,(0,),(1)求的值;(2)求cos的值分析:利用已知结合诱导公式求出cos 和sin ,把所给三角函数式利用诱导公式和三角函数关系式化简,即可求得规范解答:(1)sin,(2分)cos ,又(0,),sin .(4分).(6分)(2)cos ,sin ,(0,)sin 2,cos 2,(10分)coscos 2sin 2.(12分)答题指导:1在解答本题时有以下两点容易造成失分:(1)忽略

6、的范围而使解的三角函数值符号错误;(2)在化简时公式应用错误,而使结果错误2在用诱导公式解三角函数的问题时,还有以下几点容易造成失分,在备考时要高度关注:(1)诱导公式记忆不准确;(2)不注意角的范围和象限,造成符号的错误另外,需要熟练掌握几种常见角的变形和公式的变形,才能快速正确地解决这类问题1已知(0,),且sin cos ,则sin cos 的值为()A BC D2若cos ,且 (,),则tan _.3已知A(kZ),则A的值构成的集合是_4已知关于x的方程2x2(1)xm0的两根为sin 和cos ,(0,2),求m的值参考答案基础梳理自测知识梳理1(1)sin2cos21(2)ta

7、n(k,kZ)2sin sin sin sin cos cos cos cos cos cos sin sin tan tan tan tan 锐角300101101001不存在0不存在基础自测1A解析:cos()cos ,cos .sin ,是第四象限角,sin .2B解析:sin2xcos2x1,sin2x21,sin2x,sin2x1.3D解析:由tan ,sin2cos21及是第四象限角,解得sin .4解析:由5得,5,即tan 2.所以sin2sin cos .考点探究突破【例11】解析:cos 2sin212sin2sin2cos2.【例12】解:(1)联立方程由得cos sin

8、 ,将其代入.整理得25sin25sin 120.是三角形的内角,tan .(2).tan ,.【例21】sin x解析:原式tan xtan xsin x.【例22】解:原式.【例23】解:cos().cos ,cos .则4.【例3】解:(1)sin cos .平方得12sin cos ,sin cos .(2)sin3cos3(sin cos )(sin2sin cos cos2).(3)sin4cos4(sin2cos2)22sin2cos212.演练巩固提升1D解析:由sin cos ,01,可得cos 0,故sin cos 0.(sin cos )212sin cos ,则2sin cos ;(sin cos )212sin cos ,所以sin cos .2解析:由1tan2,则tan2.又因,故tan 0,则tan .32,2解析:当k为偶数时,A2;k为奇数时,A2.4解:由韦达定理可知由式平方得12sin cos ,sin cos ,由得.m.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3