1、人教版八年级数学上册第十五章分式章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、化简的结果是()AaBa+1Ca1Da212、已知,为实数且满足,设,若时,;若时,;若时,;若,则则上述四个结论正
2、确的有()A1B2C3D43、若分式 的值为0,则x 的值是()A2B0C-2D-54、计算,则x的值是A3B1C0D3或05、化简的结果为,则()A4B3C2D16、已知m2n2nm2,则的值是()A1B0C1D7、分式方程的解是()A0B2C0或2D无解8、一列火车长米,以每秒米的速度通过一个长为米的大桥,用代数式表示它完全通过大桥(从车头进入大桥到车尾离开大桥)所需的时间为()A秒B秒C秒D秒9、某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务,若设原计划每周生产x万个口罩,则可列方程为()ABCD10、下列式子:,其
3、中分式有()A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,则的值为_2、已知=+,则实数A=_3、方程的解是_4、分式的值比分式的值大3,则x为_5、若,则_三、解答题(5小题,每小题10分,共计50分)1、计算:(1)当x为何值时,分式的值为0(2)当x=4时,求的值2、若a0,M=,N=(1)当a=3时,计算M与N的值;(2)猜想M与N的大小关系,并证明你的猜想3、计算(1);(2);(3)4、解分式方程(1)(2)5、解方程:-参考答案-一、单选题1、B【解析】【分析】先把原式转化成同分母的分式,然后相加,运用平方差公式把分子因式分
4、解,然后分子分母同时除以公因式(a-1)即可.【详解】解:原式= ,故本题答案为:B.【考点】分式的化简是本题的考点,运用平方差公式把分子进行因式分解找到分子分母的公因式是解题的关键.2、B【解析】【分析】先求出对于当时,可得,所以正确;对于当时,不能确定的正负,所以错误;对于当时,不能确定的正负,所以错误;对于当时,正确【详解】,当时,所以,正确;当时,如果,则此时,错误;当时,如果,则此时,错误;当时,正确故选B【考点】本题关键在于熟练掌握分式的运算,并会判断代数式的正负3、A【解析】【分析】根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x的值【详解】解: 根据题意得
5、:x-2=0,且x+50,解得 x=2故选:A【考点】本题考查了分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零4、D【解析】【分析】根据实数的性质分类讨论即可求解【详解】当x=0,x-20时,即x=0;当x-2=1时,即x=3,故选D【考点】此题主要考查实数的性质,解题的关键是熟知负指数幂的运算法则5、A【解析】【分析】根据分式的运算法则即可求出答案【详解】解:依题意得:,故选:【考点】本题考查分式的运算,解题的关键是熟练运用分式的运算法则6、C【解析】【详解】分析:首先进行移项,然后转化为两个完全平方式,根据非负数的性质求出m和n的值,然后代入所求的代数式得出答案详解:,解得:
6、m=2,n=2,故选C点睛:本题主要考查的是非负数的性质以及代数式的求值,属于中等难度的题型将代数式转化为两个完全平方式是解决这个问题的关键7、D【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】去分母得,解得,经检验是增根,则分式方程无解故选:D【考点】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验8、A【解析】【分析】【详解】火车走过的路程为米,火车的速度为米秒,火车过桥的时间为(秒故选:9、A【解析】【分析】根据第一周之后,按原计划的生产时间提速后生产时间+1,可得结果【详解】由题知:故选:A【考点】本题考查了分式方
7、程的实际应用问题,根据题意列出方程式即可10、B【解析】【分析】根据分母中含有字母的式子是分式,可得答案【详解】解:,的分母中含有字母,属于分式,共有2个故选:B【考点】本题考查了分式的定义,熟悉相关性质,注意是常数,是解题的关键二、填空题1、【解析】【分析】由已知得到,整体代入求解即可【详解】解:由已知,得:,即,故答案为:【考点】本题考查了分式的化简求值,解题的关键是将已知正确变形2、1【解析】【详解】【分析】先计算出,再根据已知等式得出A、B的方程组,解之可得【详解】,=+,解得:,故答案为1【考点】本题考查了分式的加减法运算,熟练掌握分式加减运算的法则、得出关于A、B的方程组是解本题的
8、关键.3、x1【解析】【分析】原方程去分母得到整式方程,求解整式方程,最后检验即可【详解】解:,1,方程两边都乘2x1,得2x2x1,解得:x1,检验:当x1时,2x10,所以x1是原方程的解,即原方程的解是x1,故答案为:x1【考点】本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验4、1【解析】【分析】先根据题意得出方程,求出方程的解,再进行检验,最后得出答案即可【详解】根据题意得:-=3,方程两边都乘以x-2得:-(3-x)-1=3(x-2),解得:x=1,检验:把x=1代入x-20,所以x=1是所列方程的解,所以当x=1时,的值比分式的值大3【考
9、点】本题考查了解分式方程,能求出分式方程的解是解此题的关键5、【解析】【分析】根据负整数指数幂的逆运算解答即可【详解】x-3n=6,.故答案是:.【考点】考查负整数指数幂问题,解题关键是计算负整数指数幂时,一定要根据负整数指数幂的意义变形三、解答题1、(1);(2)【解析】【分析】(1)根据分母为0是分式无意义,分式值为零的条件是分子等于零且分母不等于零列式计算即可;(2)把直接代入分式,计算即可【详解】解:(1)根据题意,分式的值为0,当x+1=0,即时,分式值为0;(2)当x=4时, = = ;【考点】本题考查了分式的值为0的条件,以及求分式的值,解题的关键是掌握分式值为零的条件是分子等于
10、零且分母不等于零2、所以 a4,b 【考点】本题考查了绝对值、二次根式和分式的性质,根据题意求出a,b的值是解题关键.8(1)M,N;(2)MN;证明见解析.【解析】【分析】(1)直接将a=3代入原式求出M,N的值即可;(2)直接利用分式的加减以及乘除运算法则,进而合并求出即可【详解】(1)当a=3时,M,N;(2)方法一:猜想:MN理由如下:MNa0,a+20,a+30,MN0,MN;方法二:猜想:MN理由如下:a0,M0,N0,a2+4a+30,MN【考点】本题考查了分式的加减以及乘除运算,正确通分得出是解题的关键3、(1);(2);(3)【解析】【分析】【详解】解析:分式的乘除混合运算,
11、一般先统一为乘法运算,有括号的先算括号里面的答案:解:(1)原式;(2)原式;(3)原式易错:(1)原式错因:化简时没有看好字母的指数满分备考:乘除混合运算,遇到除法先化为乘法,有括号的先算括号里面的,每个分式的分子和分母能因式分解的就先因式分解,化简到最简分式再进行计算,最后结果要化为最简分式或整式的形式4、(1)x=-2;(2)无解【解析】【分析】(1)观察可得最简公分母是2(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解(2)观察可得最简公分母是(x+2)(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】解:经检验时,是原分式方程的解; 经检验时,不是原分式方程的解;原分式方程无解;【考点】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根5、方程无解【解析】【分析】先去分母,再去括号,移项,再合并同类项,最后把未知数的系数化为“1”,再检验即可得到答案.【详解】解:原方程可化为:去分母得: 整理得: 解得: 经检验:是原方程的增根,所以原方程无解.【考点】本题考查的是解分式方程,掌握“解分式方程的方法与步骤”是解本题的关键.