1、人教版八年级数学上册第十五章分式专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若把分式中的和同时扩大为原来的3倍,则分式的值()A扩大到原来的3倍B扩大到原来的6倍C缩小为原来的D不变2、将的分
2、母化为整数,得()ABCD3、已知关于的分式方程的解为正数,则的取值范围为()AB且CD且4、若分式在实数范围内有意义,则x的取值范围是()Ax5Bx0Cx5Dx55、若分式的值为0,则b的值为()A1B1C1D26、若关于的不等式组有解,且使关于的分式方程的解为非负数则满足条件的所有整数的和为()A-9B-8C-5D-47、已知a为整数,且为正整数,求所有符合条件的a的值的和()A8B12C16D108、已知m2n2nm2,则的值是()A1B0C1D9、若,则的大小关系为()ABCD10、一支部队排成a米长队行军,在队尾的战士要与最前面的团长联系,他用t1分钟追上了团长、为了回到队尾,他在追
3、上团长的地方等待了t2分钟如果他从最前头跑步回到队尾,那么他需要的时间是()A分钟B分钟C分钟D分钟第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若代数式有意义,则实数的取值范围是_2、若分式方程有增根,则m_3、已知,则代数式的值为_4、计算:(3)1+(4)0_5、计算的结果是_三、解答题(5小题,每小题10分,共计50分)1、若a0,M=,N=(1)当a=3时,计算M与N的值;(2)猜想M与N的大小关系,并证明你的猜想2、已知ab2018,求代数式的值3、如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”(1)下列分式:;
4、其中是“和谐分式”的是 (填写序号即可);(2)若a为正整数,且为“和谐分式”,请写出a的值 ;(3)在分式运算中,我们也会用到判断和谐分式时所需要的知识,请你用所学知识,化简4、某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元已知购进一次性医用外科口罩的单价比N95口罩的单价少10元(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?5、计算(1)
5、(2)-参考答案-一、单选题1、D【解析】【分析】根据分式的基本性质即可求出答案【详解】解:,把分式中的和同时扩大为原来的3倍,则分式的值不变,故选:D【考点】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型2、D【解析】【分析】根据分式的基本性质求解【详解】解:将的分母化为整数,可得故选:D【考点】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键3、D【解析】【分析】解分式方程用k表示出x,根据解为正数及分式有意义的条件得到关于k的不等式组,解不等式组即可得到答案【详解】通分得:,x=2-k,的解为正数,且分式有意义,解得:且,故选:D【考点】本题考查分
6、式方程与不等式的综合应用,解分式方程得到关于k的不等式组是解题关键,注意分式有意义的条件,避免漏解4、A【解析】【分析】根据分式有意义的条件列不等式求解【详解】解:根据分式有意义的条件,可得:,故选:A【考点】本题考查分式有意义的条件,理解分式有意义的条件是分母不能为零是解题关键5、A【解析】【分析】根据分式的分子为零分母不为零,可得答案【详解】解:分式的值为0,得,解得b=1,b=-1(不符合条件,舍去),故选A【考点】本题考查了分式值为零的条件,分式的分子为零分母不为零是解题关键6、A【解析】【分析】先求不等式组的解集,根据不等式组有解,可得,然后再解出分式方程,再根据分式方程的解为非负数
7、,可得,即可求解【详解】解:,解不等式,得:,解不等式,得:,不等式组有解,解得:,去分母得:,分式方程的解为非负数,且不等于2,即且,且满足条件的所有整数有-5、-4、-3、-2、0、1、2、3,满足条件的所有整数的和故选:B【考点】本题主要考查了解一元一次不等式组和分式方程,熟练掌握解一元一次不等式组和分式方程的基本步骤是解题的关键7、C【解析】【分析】首先对于分式进行化简,然后根据a为整数、分式值为正整数可求出a的值,最后将a的所有值相加即可【详解】解:,a为整数,且分式的值为正整数,a51,5,a6,10,所有符合条件的a的值的和:6+1016故选:C【考点】本题考查了分式的混合运算,
8、对分式的分子和分母能够正确分解因式是解题的关键8、C【解析】【详解】分析:首先进行移项,然后转化为两个完全平方式,根据非负数的性质求出m和n的值,然后代入所求的代数式得出答案详解:,解得:m=2,n=2,故选C点睛:本题主要考查的是非负数的性质以及代数式的求值,属于中等难度的题型将代数式转化为两个完全平方式是解决这个问题的关键9、B【解析】【分析】可以采用取特殊值法,逐一求解,然后进行判断即可【详解】令,故选B【考点】本题考查了实数的大小比较,负整数指数幂,整数指数幂,解决此类题可以选用取特殊值法进行求解10、C【解析】【分析】根据题意得到队伍的速度为,队尾战士的速度为,可以得到他从最前头跑步
9、回到队尾,那么他需要的时间是,化简即可求解【详解】解:由题意得:分钟故选:C【考点】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键二、填空题1、【解析】【分析】根据分式有意义的条件列出不等式,解不等式即可【详解】代数式有意义,分母不能为0,可得,即,故答案为:【考点】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键2、1【解析】【分析】先将分式方程去分母转化为整式方程,再由分式方程有增根,得到x-2=0,即x=2,代入整式方程计算即可求出m的值【详解】去分母得:x-m=1,由分式方程有增根,得到x-2=0,即x=2,把x=2代入整式方程得:m=1;故答案为:1【考点】
10、此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值3、#3.5#3【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值;【详解】解:,移项得,左边提取公因式得,两边同除以2得,原式故答案为:【考点】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键4、【解析】【分析】根据负整数指数幂和零次幂求解即可【详解】解:原式+1,故答案为:【考点】本题考查了负整数指数幂和零次幂,正确的计算是解题的关键5、【解析】【分析】根据分式的减法法则进行计算即
11、可【详解】原式故答案为:【考点】本题考查了分式的减法运算,熟记运算法则是解题关键三、解答题1、所以 a4,b 【考点】本题考查了绝对值、二次根式和分式的性质,根据题意求出a,b的值是解题关键.8(1)M,N;(2)MN;证明见解析.【解析】【分析】(1)直接将a=3代入原式求出M,N的值即可;(2)直接利用分式的加减以及乘除运算法则,进而合并求出即可【详解】(1)当a=3时,M,N;(2)方法一:猜想:MN理由如下:MNa0,a+20,a+30,MN0,MN;方法二:猜想:MN理由如下:a0,M0,N0,a2+4a+30,MN【考点】本题考查了分式的加减以及乘除运算,正确通分得出是解题的关键2
12、、4036【解析】【详解】试题分析:根据分式的乘除法,先对分子分母分解因式,然后把除法化为乘法,再约分,然后代入求值.试题解析:原式(ab)(ab)2(ab)ab2 018,原式22 0184 036.3、(1)分式是和谐分式,故答案为:;(2) (3)【解析】【分析】(1)根据题意可以判断题目中的各个小题哪个是和谐分式,从而可以解答本题;(2)根据和谐分式的定义可以得到a的值;(3)根据题意和和谐分式的定义可以解答本题【详解】解:(1)分式,不可约分,分式是和谐分式,故答案为:; (2)分式 为和谐分式,且a为整数, 【考点】本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利
13、用和谐分式的定义解答4、(1)一次性医用口罩和N95口单价分别是2元,12元;(2)药店购进一次性医用口罩至少1400只【解析】【分析】(1)设一次性医用口罩单价为x元,则N95口罩的单价为元,列分式方程求解即可;(2)设购进一次性医用口罩y只,根据题意列不等式求解即可【详解】解:(1)设一次性医用口罩单价为x元,则N95口罩的单价为元由题意可知,解方程得 经检验是原方程的解,当时, 答:一次性医用口罩和N95口单价分别是2元,12元(2)设购进一次性医用口罩y只根据题意得, 解不等式得答:药店购进一次性医用口罩至少1400只【考点】本题考查的是分式方程的应用,一元一次不等式的应用,掌握列分式方程与列不等式是解题的关键5、(1)7;(2)【解析】【分析】(1)先分别计算乘方、绝对值、负整数指数幂、零指数幂,再计算乘法,最后计算加减;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可求解【详解】(1)原式846184217;(2)原式【考点】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值的性质、负整数指数幂、零指数幂及分式的混合运算顺序和运算法则