1、八年级数学上册第十二章全等三角形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,AC5,AB7,AD平分BAC,DEAC,DE2,则ABC的面积为()A14B12C10D72、下
2、列说法正确的是()A形状相同的两个三角形全等B面积相等的两个三角形全等C完全重合的两个三角形全等D所有的等边三角形全等3、如图,在和中,线段BC的延长线交DE于点F,连接AF若,则线段EF的长度为()A4BC5D4、如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使ABECDF,则添加的条件不能是()AAE=CFBBE=FDCBF=DED1=25、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角
3、平分线的交点A1B2C3D46、如图,在中,点D是BC边上一点,已知,CE平分交AB于点E,连接DE,则的度数为()ABCD7、如图,BDBC,BECA,DBEC62,BDE75,则AFE的度数等于()A148B140C135D1288、如图,在中,的平分线交于点D,DE/AB,交于点E,于点F,则下列结论错误的是()ABCD9、 “经过已知角一边上的一点作“个角等于已知角”的尺规作图过程如下:已知:如图(1),AOB和OA上一点C求作:一个角等于AOB,使它的顶点为C,一边为CA作法:如图(2),(1)在0A上取一点D(ODOC),以点O为圆心,OD长为半径画弧,交OB于点E;(2)以点C为
4、圆心,OD长为半径画弧,交CA于点F,以点F为圆心,DE长为半径画弧,两弧交于点C;(3)作射线CC所以CCA就是所求作的角此作图的依据中不含有()A三边分别相等的两个三角形全等B全等三角形的对应角相等C两直线平行同位角相等D两点确定一条直线10、如图,锐角ABC的两条高BD、CE相交于点O,且CEBD,若CBD20,则A的度数为()A20B40C60D70第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在和中,点B、E、C、F在同一条直线上,且,请你再添加一个适当的条件:_,使2、如图,已知在ABD和ABC中,DABCAB,点A、B、E在同一条直线上,若使ABD
5、ABC,则还需添加的一个条件是_(只填一个即可)3、如图,ABBC于B,DCBC于C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP_时,形成的RtABP与RtPCD全等4、如图,点B、E、C、F在同一条直线上,ABDE,ABDE,AD,BF10,BC6,则EC_5、如图所示,在中,D是的中点,点A、F、D、E在同一直线上请添加一个条件,使(不再添其他线段,不再标注或使用其他字母),并给出证明你添加的条件是_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,BC=AB,ABC=90,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:RtABERtCBF;
6、(2)若CAB=30,求ACF的度数2、已知:如图,AB=DE,ABDE,BE=CF,且点B、E、C、F都在一条直线上,求证:ACDF3、如图,在ABC中,ABAC,BAC90,12,CEBD交BD的延长线于点E.求证:BD2CE.4、已知:如图,求证:5、如图,A,B,C,D依次在同一条直线上,BF与EC相交于点M求证:-参考答案-一、单选题1、B【解析】【分析】过点D作DFAB于点F,利用角平分线的性质得出,将的面积表示为面积之和,分别以AB为底,DF为高,AC为底,DE为高,计算面积即可求得【详解】过点D作DFAB于点F,AD平分BAC,DEAC,DFAB,, ,故选:B【考点】本题考查
7、角平分线的性质,角平分线上的点到角两边的距离相等,熟记性质作出辅助线是解题关键2、C【解析】【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案【详解】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C【考点】此题主要考查了全等图形,关键是掌握全等形的概念3、B【解析】【分析】证明,根据全等三角形对应边相等,得到,由解得,继而解得,最后由解答【详解】解:,故选:B【考点】本题考查全等三角形的判定
8、与性质、线段的和差等知识,是重要考点,掌握相关知识是解题关键4、A【解析】【分析】利用平行四边形的性质以及全等三角形的判定分别得出即可【详解】解:A、若添加条件:AE=CF,因为ABD=CDB,不是两边的夹角,所以不能证明ABECDF,所以错误,符合题意,B、若添加条件:BE=FD,可以利用SAS证明ABECDF,所以正确,不符合题意;C、若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明ABECDF,所以正确,不符合题意;D、若添加条件:1=2,可以利用ASA证明ABECDF,所以正确,不符合题意;故选:A【考点】本题考查了平行四边形的性质、全等三角形的判定,解题的关键是掌握三角
9、形的判定定理5、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点
10、,是解题的关键6、B【解析】【分析】过点E作于M,于N,于H,如图,先计算出,则AE平分,根据角平分线的性质得,再由CE平分得到,则,于是根据角平分线定理的逆定理可判断DE平分,再根据三角形外角性质解答即可【详解】解:过点E作于M,于N,于H,如图,平分,平分,平分,由三角形外角可得:,而,故选:B【考点】本题考查了角平分线的性质和判定定理,三角形的外角性质定理,解决本题的关键是运用角平分线定理的逆定理证明DE平分7、A【解析】【分析】根据已知条件可知ABCEDB,由全等可得到AE,并利用三角形内角和可求得E,再应用外角和求得AFE【详解】BDBC,BECA,DBEC,ABCEDB(SAS),
11、AE,DBE62,BDE75,E180607543,A43,BDEADE180,ADE105,AFEADEA10543148故选:A【考点】本题考查了全等三角形的判定和性质、三角形外角和、内角和定理,难度不大,但要注意数形结合思想的运用8、A【解析】【分析】根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明BDFDEC,求出BF=CD=3,故A错误【详解】解:在中,的平分线交于点D,CD=DF=3,故B正确;DE=5,CE=4,DE/AB,ADE=DAF,CAD=BAD,CAD=ADE,AE=DE=5,故C正确;AC=
12、AE+CE=9,故D正确;B=CDE,BFD=C=90,CD=DF,BDFDEC,BF=CD=3,故A错误;故选:A【考点】此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键9、C【解析】【分析】根据题意知,作图依据有全等三角形的判定定理SSS,全等三角形的性质和两点确定一条直线,直接判断即可【详解】解:由题意可得:由全等三角形的判定定理SSS可以推知EODGCF,故A正确;结合该全等三角形的性质对应角相等,故B正确;作射线CG,利用两点确定一条直线,故D正确;故选:C【考点】本题考查作一个角等于已知角和三角形全等的判定
13、与性质,解题关键是明确作图原理,准确进行判断10、B【解析】【分析】由BD、CE是高,可得BDC=CEB=90,可求BCD70,可证RtBECRtCDB(HL),得出BCDCBE70即可【详解】解:BD、CE是高,CBD20,BDC=CEB=90,BCD180902070,在RtBEC和RtCDB中,RtBECRtCDB(HL),BCDCBE70,A180707040故选:B【考点】本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键二、填空题1、或或【解析】【分析】根据全等三角形的判定即可求解【详解】解:根据定理
14、,即,可得;根据定理,即,可得;若,则,则根据定理,即可得;综上所述,添加一个适当的条件:或或,故答案为:或或(答案不唯一)【考点】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键2、ADAC(DC或ABDABC等)【解析】【分析】利用全等三角形的判定方法添加条件即可求解【详解】解:DABCAB,ABAB,当添加ADAC时,可根据“SAS”判断ABDABC;当添加DC时,可根据“AAS”判断ABDABC;当添加ABDABC时,可根据“ASA”判断ABDABC故答案为ADAC(DC或ABDABC等)【考点】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一
15、种方法,取决于题目中的已知条件3、2【解析】【分析】当BP=2时,RtABPRtPCD,由BC=8可得CP=6,进而可得AB=CP,BP=CD,再结合ABBC、DCBC可得B=C=90,可利用SAS判定ABPPCD【详解】当BP=2时,RtABPRtPCD理由如下:BC=8,BP=2,PC=6,AB=PCABBC,DCBC,B=C=90在ABP和PCD中,ABPPCD(SAS)故答案为:2【考点】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角
16、相等时,角必须是两边的夹角4、2【解析】【分析】根据平行线的性质得出BDEF,即可利用ASA证明ABCDEF,根据全等三角形的性质得出BCEF6,即可根据线段的和差得解【详解】解:ABDE,BDEF,在ABC和DEF中,ABCDEF(ASA),BCEF,BF10,BC6,EF6,CFBFBC4,ECEFCF2,故答案为:2【考点】此题考查了全等三角形的判定与性质,利用ASA证明ABCDEF是解题的关键5、ED=FD(答案不唯一,E=CFD或DBE=DCF)【解析】【分析】根据三角形全等的判定方法SAS或AAS或ASA定理添加条件,然后证明即可【详解】解:D是的中点,BD=DC若添加ED=FD在
17、BDE和CDF中,BDECDF(SAS);若添加E=CFD在BDE和CDF中,BDECDF(AAS);若添加DBE=DCF在BDE和CDF中,BDECDF(ASA);故答案为:ED=FD(答案不唯一,E=CFD或DBE=DCF)【考点】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键三、解答题1、 (1)证明见解析(2)【解析】【分析】(1)由“HL”可证RtABERtCBF;(2)由AB=CB,ABC=90,即可求得CAB与ACB的度数,即可得BAE的度数,又由RtABERtCBF,即可求得BCF的度数,则由ACF=BCF+ACB即可求得答案(1)ABC=90,CBF=A
18、BE=90,在RtABE和RtCBF中,RtABERtCBF(HL);(2)AB=BC,ABC=90,CAB=ACB=45,BAE=CAB-CAE=45-30=15。RtABERtCBF,BCF=BAE=15,ACF=BCF+ACB=15+45=60【考点】此题考查了直角三角形全等的判定与性质解题的关键是注意数形结合思想的应用2、详见解析【解析】【分析】首先利用平行线的性质B=DEF,再利用SAS得出ABCDEF,得出ACB=F,根据平行线的判定即可得到结论【详解】证明:ABDE,B=DEC,又BE=CF,BC=EF,在ABC和DEF中,ABCDEF(SAS),ACB=F,ACDF【考点】本题
19、考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键3、证明见解析.【解析】【分析】延长CE、BA交于F,根据角边角定理,证明BEFBEC,进而得到CF=2CE的关系再证明ACF=1,根据角边角定理证明ACFABD,得到BD=CF,至此问题得解【详解】证明:分别延长BA,CE交于点F.BECE,BEFBEC90.又12,BEBE,BEFBEC(ASA),CEFECF.1F90,ACFF90,1ACF.又ABAC,BADCAF90,ABDACF(ASA),BDCF,BD2CE【考点】本题考查了全等三角形的判定与性质解题的关键是恰当添加辅助线,构造全等三角形,将所求
20、问题转化为全等三角形内边间的关系来解决4、见解析【解析】【分析】连接AC,首先根据“HL”判定ABCCDA,得到AD=BC,再证ADOCBO,则可得到需证的结论.【详解】证明:连接AC.在RtABC和RtCDA中,ABCCDA.AD=BC.,AD0=CB0=90.又AOD=COB,ADOCBO.【考点】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS5、见解析【解析】【分析】由AB=CD,得AC=BD,再利用SAS证明AECDFB,即可得结论【详解】证明:,在和中,【考点】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键