ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:341.77KB ,
资源ID:641609      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-641609-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022-2023学年度人教版八年级数学上册第十一章三角形同步训练试卷.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022-2023学年度人教版八年级数学上册第十一章三角形同步训练试卷.docx

1、人教版八年级数学上册第十一章三角形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AE是ABC的中线,D是BE上一点,若EC6,DE2,则BD的长为()A4B3C2D12、如图,在中,AB2

2、020,AC2018,AD为中线,则与的周长之差为()A1B2C3D43、如图,与交于点,则的度数为()ABCD4、下列说法中正确的是()A三角形的三条中线必交于一点B直角三角形只有一条高C三角形的中线可能在三角形的外部D三角形的高线都在三角形的内部5、如图,已知a/b,1=120,2=90,则3的度数是()A120B130C140D1506、如图,B=C,则ADC与AEB的大小关系是()AADCAEBBADCAEBCADC=AEBD大小关系不确定7、下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()已知:如图,BECB+C求证:ABCD证明:延长BE交于点F,则BEC

3、180FEC+C又BECB+C,得B故ABCD(相等,两直线平行)A代表FECB代表同位角C代表EFCD代表AB8、如图,在ABC中有四条线段DE,BE,EF,FG,其中有一条线段是ABC的中线,则该线段是()A线段DEB线段BEC线段EFD线段FG9、如图,一束太阳光线平行照射在放置于地面的正六边形上,若,则的度数为( )ABCD10、能够铺满地面的正多边形组合是()A正三角形和正五边形B正方形和正六边形C正方形和正八边形D正五边形和正十边形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,的度数为_2、如图,,,则_3、如图,在正五边形ABCDE中,AC与BE相

4、交于点F,则AFE的度数为_4、如图,已知,是角平分线且,作的垂直平分线交于点F,作,则周长为_5、如图,在中,AE是的角平分线,D是AE延长线上一点,于点H若,则_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,AD是的角平分线,求的度数2、已知:如图,ABC是任意一个三角形,求证:A+B+C=1803、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,(1)求证:;(2)求的度数4、如图,在RtABC中,ACB=90,A=40,ABC的外角CBD的平分线BE交AC的延长线于点E(1)求CBE的度数;(2)过点D作DFBE,交AC的延长线于点F,求F的度数5、小王准

5、备用一段长30米的篱笆围成一个三角形形状的场地,用于饲养家兔,已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)问第一条边长可以为7米吗?请说明理由.-参考答案-一、单选题1、A【解析】【分析】根据三角形中线定义得BE=EC=6,再由BD=BE-DE求解即可【详解】解:AE是ABC的中线,EC=6,BE=EC=6, DE=2,BD=BEDE=62=4,故选:A【考点】本题考查了三角形的中线,熟知三角形的中线定义是解答的关键2、B【解析】【分析】由AD为的中线,可得:,再利用,即可得到答案【详解】解:AD为的中线, 故选【考点】本题考

6、查的是三角形的中线的概念,掌握三角形的中线的含义是解题的关键3、A【解析】【分析】先根据三角形的内角和定理可求出,再根据平行线的性质即可得【详解】故选:A【考点】本题考查了三角形的内角和定理、平行线的性质,熟记平行线的性质是解题关键4、A【解析】【分析】根据三角形中线及高线的定义逐一判断即可得答案【详解】A.三角形的三条中线必交于一点,故该选项正确,B.直角三角形有三条高,故该选项错误,C.三角形的中线不可能在三角形的外部,故该选项错误,D.三角形的高线不一定都在三角形的内部,故该选项错误,故选:A【考点】本题考查三角形的中线及高线,熟练掌握定义是解题关键5、D【解析】【分析】延长的边与直线相

7、交,然后根据两直线平行,同旁内角互补求出,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解】如图,延长的边与直线相交,由三角形的外角性质可得,故选:【考点】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键6、C【解析】【分析】首先在ADC中有内角和为180,即ACADC180,在AEB中有内角和为180,即AEBAB180,又知BC,故可得AEBADC【详解】在ADC中有ACADC180,在AEB有AEBAB180,BC,ADCAEB故选C【考点】本题主要考查三角形内角和定理的应用,利用了三角形内角和为1

8、80度,此题难度不大7、C【解析】【分析】利用邻补角的概念、等量代换及平行线的判定求解可得【详解】证明:延长交于点,则又,得故(内错角相等,两直线平行)所以代表,代表,代表,代表内错角,故选:【考点】本题主要考查平行线的判定,解题的关键是掌握邻补角的概念、等量代换及平行线的判定8、B【解析】【详解】【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得【详解】根据三角形中线的定义知线段BE是ABC的中线,其余线段DE、EF、FG都不符合题意,故选B【考点】本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线9、A【解析】【分析】

9、先求出正六边形的内角和外角,再根据三角形的外角性质以及平行线的性质,即可求解【详解】解:正六边形的每个内角等于120,每个外角等于60,FAD=120-1=101,ADB=60,ABD=101-60=41光线是平行的,=ABD=,故选A【考点】本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键10、C【解析】【分析】利用正多边形内角度数=180-360边数,计算出正多边形的内角,根据题意能够铺满地面的图形,即是两种或两种以上几何图形镶嵌成平面,围绕一点拼在一起的多边形的内角加在一起恰好组成一个360的周角,据此判断即可【详解】A、正三角

10、形和正五边形内角分别为60、108,由于60m+108n=360,得,显然n取任何正整数时,m不能得正整数,故不能铺满,不符合题意;B、正方形和正六边形内角分别为90、120,90m+120n=360,同理m、n不存在正整数值使之成立,故不能铺满,不符合题意;C、正方形的每个内角为90,正八边形的每个内角为135,90m+135n=360,当m=1,n=2时等式成立,符合题意;D、正五边形和正十边形内角分别为108、144,108m+144n=360,同理m、n不存在正整数值使之成立,故不能铺满地面,不符合题意故选:C【考点】此题主要考查了平面镶嵌,属于基础题,熟练掌握镶嵌的含义是解题的关键二

11、、填空题1、【解析】【分析】根据多边形的外角和定理即可求解【详解】解:由多边形的外角和定理知,1+2+3+4=360,故答案是:360【考点】本题考查了多边形的外角和定理,理解定理是关键2、80【解析】【分析】由三角形的外角的性质可得,代入数据即可得到答案【详解】解:由题意可知:,,,故答案为:80【考点】本题考查的是三角形的外角的性质,掌握“三角形的外角等于与它不相邻的两个内角之和”是解本题的关键3、72【解析】【分析】首先根据正五边形的性质得到AB=BC=AE,ABC=BAE=108,然后利用三角形内角和定理得BAC=BCA=ABE=AEB=(180108)2=36,最后利用三角形的外角的

12、性质得到AFE=BAC+ABE=72【详解】五边形ABCDE为正五边形,AB=BC=AE,ABC=BAE=108,BAC=BCA=ABE=AEB=(180108)2=36,AFE=BAC+ABE=72,故答案为72【考点】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键4、【解析】【分析】知道和是角平分线,就可以求出,的垂直平分线交于点F可以得到AF=FD,在直角三角形中30所对的边等于斜边的一半,再求出DE,得到【详解】解: 的垂直平分线交于点F, (垂直平分线上的点到线段两端点距离相等) ,是角平分线 , 【考点】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题

13、,掌握运用三者的性质是解题的关键5、10【解析】【分析】在EFD中,由三角形的外角性质知:HED=AEC=B+BAC,所以B+BAC+EDH=90;联立ABC中,由三角形内角和定理得到的式子,即可推出EDH=(C-B)【详解】解:由三角形的外角性质知:HED=AEC=B+BAC,故B+BAC+EDH=90,ABC中,由三角形内角和定理得:B+BAC+C=180,即:C+B+BAC=90,-,得:EDH=(C-B)=(50-30)=10故答案为:10【考点】本题考查三角形内角和定理、三角形的外角性质以及角平分线的定义等知识,解题的关键是证明EFD=(C-B)三、解答题1、102【解析】【分析】由

14、三角形内角和可得BAC=80,然后由角平分线的定义可得,然后再根据三角形内角和可求解【详解】解:在中,(三角形内角和定理),(已知),(等式的性质)AD平分(已知),(角平分线的定义)在中,(三角形内角和定理)(已知),(已证),(等式的性质)【考点】本题主要考查角平分线的定义及三角形内角和,熟练掌握角平分线的定义及三角形内角和是解题的关键2、证明见解析【解析】【分析】过点A作EFBC,利用EFBC,可得1=B,2=C,而1+2+BAC=180,利用等量代换可证BAC+B+C=180【详解】解:如图,过点A作EFBC,EFBC,1=B,2=C,1+2+BAC=180,BAC+B+C=180,即

15、A+B+C=180【考点】本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键3、 (1)证明见解析;(2)【解析】【分析】(1)利用三角形内角和定理求出,再利用折叠和角平分线的性质证明,即可证明;(2)利用三角形内角和定理求出,再利用对顶角相等证明,再利用三角形内角和定理即可求出(1)证明:,,AE平分,(2)解:,且,【考点】本题考查三角形内角和定理,折叠的性质,角平分线的性质,对顶角相等,(1)的关键是求出,证明;(2)的关键是求出4、 (1) 65;(2) 25【解析】【分析】(1)先根据直角三角形两锐角互余求出ABC=90A=50,由邻补角定义得

16、出CBD=130再根据角平分线定义即可求出CBE=CBD=65;(2)先根据直角三角形两锐角互余的性质得出CEB=9065=25,再根据平行线的性质即可求出F=CEB=25【详解】(1)在RtABC中,ACB=90,A=40,ABC=90A=50,CBD=130BE是CBD的平分线,CBE=CBD=65;(2)ACB=90,CBE=65,CEB=9065=25DFBE,F=CEB=25【考点】本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义掌握各定义与性质是解题的关键5、(1)(283a);(2)不可以,理由见解析.【解析】【分析】(1)根据“第二

17、条边长只能是第一条边长的2倍多2米”表示出第二条边长,然后再根据总长即可表示出第三条边长;(2)若第一条边长为7米,分别求出第二条边长和第三条边长,判断是否能构成三角形即可.【详解】解:(1)第二条边长只能是第一条边长的2倍多2米,第一条边长为a米第二条边长为(2a+2)米,由题意可知:第三条边长为30a(2a+2)=(283a)米;(2)若a=7,则第二条边长为(27+2)=16米,第三条边长为(2837)=7米7716此时不能构成三角形,第一条边长不可以为7米.【考点】此题考查的是用代数式表示实际意义和三角形的三边关系,掌握实际问题中各个量之间的关系和用三边关系判断三条线段是否能构成三角形是解决此题的关键.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1