ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:387.57KB ,
资源ID:641435      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-641435-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022-2023学年度人教版九年级数学上册第二十五章概率初步必考点解析试卷(含答案详解版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022-2023学年度人教版九年级数学上册第二十五章概率初步必考点解析试卷(含答案详解版).docx

1、人教版九年级数学上册第二十五章概率初步必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在22的正方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使ABC为直角三角形的概率是

2、()ABCD2、在一个不透明的盒子中装有30个白、黄两种颜色的乒乓球,这些乒乓球除颜色外都相同 班长进行了多次的摸球试验,发现摸到黄色乒乓球的频率稳定在0.3左右,则盒子中的白色乒乓球的个数可能是()A21个B15个C12个D9个3、甲、乙是两个不透明的纸箱,甲中有三张标有数字,的卡片,乙中有三张标有数字,的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为,从乙中任取一张卡片,将其数字记为若,能使关于的一元二次方程有两个不相等的实数根,则甲获胜;否则乙获胜则乙获胜的概率为()ABCD4、平行四边形ABCD的对角线AC、BD相交于O,给出的四个条件AB=BC

3、;ABC=90;OA=OB;ACBD,从所给的四个条件中任选两个,能判定平行四边形ABCD是正方形的概率是()ABCD5、某校团支部组织部分共青团员开展学雷锋志愿者服务活动,每个志愿者都可以从以下三个项目中任选一项参加:敬老院做义工;文化广场地面保洁;路口文明岗值勤则小明和小慧选择参加同一项目的概率是()ABCD6、某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕到草鱼的频率稳定在0.5附近,则该鱼塘捞到鲢鱼的概率约为( )ABCD7、如图所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为

4、的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了所示的折线统计图,由此他估计不规则图案的面积大约为()ABCD8、从下列命题中,随机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)弧长是,面积是的扇形的圆心角是ABCD19、投掷硬币m次,正面向上n次,其频率p=,则下列说法正确的是()Ap一定等于Bp一定不等于C多投一次,p更接近D投掷次数逐步增加,p稳定在附近10、小冬和小松正在玩“掷骰子,

5、走方格”的游戏游戏规则如下:(1)掷一枚质地均匀的正方体骰子(骰子六个面的数字分别是1至6),落地后骰子向上一面的数字是几,就先向前走几格,然后暂停(2)再看暂停的格子上相应的文字要求,按要求去做后,若还有新的文字要求,则继续按新要求去做,直至无新要求为止,此次走方格结束下图是该游戏的部分方格:大本营1对自己说“加油!”2后退一格3前进三格4原地不动5对你的小伙伴说“你好!”6背一首古诗例如:小冬现在的位置在大本营,掷骰子,骰子向上一面的数字是2,则小冬先向前走两格到达方格2,然后执行方格2的文字要求“后退一格”,则退回到方格1,再执行方格1的文字要求:对自己说“加油!”小冬此次“掷骰子,走方

6、格”结束,最终停在了方格1如果小松现在的位置也在大本营,那么他掷一次骰子最终停在方格6的概率是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明在2022北京冬奥会知识竞赛中,获得一次游戏抽奖机会,规则为:随机掷两枚骰子,骰子朝上的数字和是几,就将棋子前进几格,并获得相应格子中的奖品现在棋子在“起点”处,小明随机掷两枚骰子一次,他获得吉祥物“冰墩墩”或“雪容融”的概率是_2、如图,在33的正方形网格中,已有两个小正方形被涂黑,在从图中剩余的7个小正方形中任选一个涂黑,则图案是轴对称图形的概率是 _3、投掷一枚正方体骰子,朝上的一面是合数的可能性大小是_4、

7、将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)掷一次,朝上一面点数是1的概率为_5、贵阳市2021年中考物理实验操作技能测试中,要求学生两人一组合作进行,并随机抽签决定分组有甲、乙、丙、丁四位同学参加测试,则甲、乙两位同学分到同一组的概率是_三、解答题(5小题,每小题10分,共计50分)1、小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:,是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形、同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色若配成紫色,则小颖去观看,否则小亮去观看这

8、个游戏对双方公平吗?请说明理由2、为丰富学生课余活动,明德中学组建了A体育类、B美术类、C音乐类和D其它类四类学生活动社团,要求每人必须参加且只参加一类活动学校随机抽取八年级(1)班全体学生进行调查,以了解学生参团情况根据调查结果绘制了两幅不完整的统计图(如图所示)请结合统计图中的信息,解决下列问题:(1)八年级(1)班学生总人数是 人,补全条形统计图,扇形统计图中区域C所对应的扇形的圆心角的度数为 ;(2)明德中学共有学生2500人,请估算该校参与体育类和美术类社团的学生总人数;(3)校园艺术节到了,学校将从符合条件的4名社团学生(男女各2名)中随机选择两名学生担任开幕式主持人,请用列表或画

9、树状图的方法,求恰好选中1名男生和1名女生的概率3、为响应国家“双减“政策,增强学生体质,某校对学生设置了体操、球类、跑步、游泳等课外体育活动,为了了解学生对这些项目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和喇形统计图(均不完整)(1)在这次问要调查中,一共抽查了_名学生;(2)补全频数分布直方图,求出扇形统计图中体操项目所对应的圆心角度数;(3)估计该校1200名学生中有多少名喜爱跑步项目;(4)球类教练在制定训练计划前,将从最喜欢球类项目的甲、乙、丙、丁四名同学中任选两人进行个別座

10、谈,请用列表法或两树状图法求抽取的两人恰好是甲和乙的概率4、现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字2,3,4;B袋中的三个小球上分别标记数字3,4,5这六个小球除标记的数字外,其余完全相同(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为 ;(2)分别将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个球,请利用画树状图或列表的方法,求摸出的这两个小球标记的数字之和为7的概率5、某校社团活动开设的体育选修课,篮球(A),足球(B),排球(C),羽毛球(D),乒乓球(E),每个学生选修其中的一门.学校对某班全班同

11、学的选课情况进行调查统计后制成了以下两个统计图.(1)请你求出该班的总人数,并补全频数分布直方图;(2)该校共有1000名学生,请估计该校学生体育选修课选修篮球(A)的学生约有多少人?(3)该班的其中某4各同学,1人选修篮球(A),2人选修足球(B),1人选修排球(C).若要从这4人中任选2人,请你用列表或画树状图的方法,求选出的2人恰好是1人选修篮球,1人选修足球的概率.-参考答案-一、单选题1、C【解析】【分析】找到可以组成直角三角形的点,根据概率公式解答即可【详解】解:如图,均可与点和组成直角三角形,故选:C【考点】本题考查了概率公式,解题的关键是掌握如果一个事件有种可能,而且这些事件的

12、可能性相同,其中事件出现种结果,那么事件的概率(A)2、A【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有白色乒乓球x个,列出方程求解即可【详解】解:设袋中有白色乒乓球x个,由题意得0.3,解得x21故选:A【考点】本题利用了用大量试验得到的频率可以估计事件的概率关键是利用黄球的概率公式列方程求解得到黄球的个数3、C【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得乙获胜的概率.【详解】(1)关于的一元二次方程有两个不相等的

13、实数根,=b2-4a0,画树状图如下:由图可知,共有种等可能的结果,分别是a=,b=1,则=-10;a=,b=2,则=20;a=,b=1,则=0;a=,b=3,则=80;a=,b=2,则=30;a=1,b=1,则=-30;a=1,b=2,则=0;其中能使乙获胜的有种结果数,乙获胜的概率为,故选C【考点】本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验4、D【解析】【分析】先确定组合的总数,再确定能判定是正方形的组合数,根据概率公式计算即可【详解】一共有,;6种组合数,其中能判定四边形是正方形有,4种组合数,所以能判定平行四边形ABCD

14、是正方形的概率是,故选D【考点】本题考查了概率公式计算,熟练掌握正方形的判定是解题的关键5、A【解析】【分析】先根据题意画出树状图,然后再根据概率的计算公式进行计算即可【详解】解:根据题意画出树状图,如图所示:共有9种等可能的情况,其中小明和小慧选择参加同一项目的有3种情况,小明和小慧选择参加同一项目的概率为,故A正确故选:A【考点】本题主要考查了概率公式、画树状图或列表格求概率,根据题意画出树状图或列出表格,是解题的关键6、D【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率【详解】解:捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x,可得:,x

15、=2400,经检验:是原方程的根,且符合题意,捞到鲢鱼的概率为:,故选:D【考点】本题考察了概率、分式方程的知识,解题的关键是熟练掌握概率的定义,通过求解方程,从而得到答案7、B【解析】【分析】本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解【详解】假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为: ,当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:,解得故选:B

16、【考点】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高8、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)设扇形半径为r,圆心角为n,弧长是,则=,则,面积是,则=,则360240,则,则n=360024=150,故扇形的圆心角是,是假命题,则随机抽取一个是真命题的概率是,故选C.【考点】本题考查了命题的真假,概率,扇形的弧长和面积,无理数

17、,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.9、D【解析】【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果【详解】投掷硬币m次,正面向上n次,投掷次数逐步增加,p稳定在附近故选:D【考点】考查利用频率估计概率,大量反复试验下频率稳定值即概率注意随机事件可能发生,也可能不发生10、B【解析】【分析】根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答即可【详解】掷一次骰子最终停在方格6的情况有直接掷6;掷3后前进三格到6;所以掷一次骰子最终停在方格6的概率是,故选B【考点】此题

18、考查几何概率,关键是根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答二、填空题1、【解析】【分析】通过列表法求出所有的结果数与满足条件的结果数,再利用概率公式求解即可【详解】解:随机掷两枚骰子的结果如下表所示:1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6

19、)随机掷两枚骰子得到的数字之和的结果如下表所示:123456123456723456783456789456789105678910116789101112由游戏规则可知,前进4步,可以得到“冰墩墩”;前进6步可以得到“雪容融”;由表格可知一共有36种结果,其中满足条件的结果数为8;所以他获得吉祥物“冰墩墩”或“雪容融”的概率是;故答案为:【考点】本题考查了用列表法或树状图法求概率,解题的关键是能正确列出所有的结果,并求出符合条件的结果数,同时牢记概率公式2、【解析】【分析】将空白部分小正方形分别涂黑,任意一个涂黑共7种情况,其中涂黑1,3,5,6,7有5种情况可使所得图案是一个轴对称图形,利

20、用概率公式求解即可【详解】解:如图,将图中剩余的编号为1至7的小正方形中任意一个涂黑共7种情况,其中涂黑1,3,5,6,7有5种情况可使所得图案是一个轴对称图形,所以所得图案是轴对称图形的概率是故答案为:【考点】本题考查了概率公式求简单概率,设计轴对称图形,理解题意是解题的关键3、【解析】【分析】正方体骰子共6个数,其中4和6为合数,所以投掷一枚正方体骰子,朝上的一面是合数的可能性大小是【详解】解:正方体骰子共6个数,合数为4,6共2个,所以投掷一枚正方体骰子,朝上的一面是合数的可能性大小是,故答案为:【考点】本题考查判断事件发生的可能性大小,利用概率来求解是解题的关键4、【解析】【分析】使用

21、简单事件概率求解公式即可:事件发生总数比总事件总数【详解】掷骰子一次共可能出现6种情况,分别是向上点数是:1、2、3、4、5、6,点数1向上只有一种情况,则朝上一面点数是1的概率P=故答案为:【考点】本题考查了简单事件概率求解,熟练掌握简单事件概率求解的公式是解题的关键5、【解析】【分析】画树状图,共有12种等可能的结果,甲、乙两位同学分到同一组的结果有2种,再由概率公式求解即可【详解】解:画树状图如图:共有12种等可能的结果,甲、乙两位同学分到同一组的结果有4种,甲、乙两位同学分到同一组的概率为,故答案为:【考点】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出

22、所有可能的结果,适合于两步完成的事件用到的知识点为:概率所求情况数与总情况数之比三、解答题1、这个游戏对双方公平,理由见解析【解析】【分析】画出树状图,求出配成紫色的概率即可求解【详解】解:这个游戏对双方公平,理由如下:如图,由树状图可知,所有可能发生的组合有6种,能配成紫色的组合有3种,P(紫色)=,这个游戏对双方公平【考点】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平画出树状图,求出他们各自获胜的概率是解答本题的关键2、 (1)40;补全条形统计图见解析;90;(2)该校参与体育类和美术类社团的学生总人数大约有1625人;(3)选中1名男生

23、和1名女生担任开幕式主持人的概率是【解析】【分析】(1)利用A类人数除以所占百分比可得抽取总人数;根据总数计算出C类的人数,然后再补图;用360乘以C类所占的百分比,计算即可得解; (2)利用样本估计总体的方法计算即可;(3)画树状图展示所有12种等可能的结果数,再找出恰好选中1名男生和1名女生的结果数,然后利用概率公式求解(1)解:抽取的学生总数:1230%=40(人),C类学生人数:40-12-14-4=10(人),补全统计图如下:扇形统计图中C类所在的扇形的圆形角度数是360=90;故答案为:40;90;(2)解:2500=1625(人),答:该校参与体育类和美术类社团的学生总人数大约有

24、1625人;(3)(3)画树状图为:共有12种等可能的结果数,其中选中1名男生和1名女生担任开幕式主持人的有8种,所以选中1名男生和1名女生担任开幕式主持人的概率是:【考点】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率也考查的是条形统计图和扇形统计图的综合运用3、 (1)80(2)见解析,45(3)150名(4)【解析】【分析】(1)根据其他的人数和所占的百分比可以求得本次调查的人数;(2)根据(1)中的结果可以求得喜爱游泳人数,从而可以条形统计图补充完整,并求得扇形统计图中“体操”所对应的圆心

25、角度数;(3)根据统计图中的数据可以求得该校1200名学生中有多少人喜爱跑步项目;(4)根据题目条件列出树状图,并根据概率公式求解即可(1)解:,即在这次问卷调查中,一共抽查了80名学生;(2)解:喜爱游泳的学生有(名);补全的频数分布直方图如图1所示:扇形统计图中体操项目所对应的圆心角度数是;(3)解:(名),故估计该校1200名学生中有150名喜爱跑步项目;(4)解:画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2种,所以抽取的两人恰好是甲和乙的概率为【考点】本题考查条形统计图、扇形统计图、用样本估计总体,列树状图求概率,解答本题的关键是明确题意,利用数形结合的

26、思想解答4、 (1)(2)【解析】【分析】(1)直接由概率公式求解即可;(2)画树状图,共有9中可能的结果,摸摸出的这两个小球标记的数字之和为7的结果有3种,再由概率公式求解即可(1)解:将A袋,中的小球摇匀,从中随机摸出一个小球共三种情况,则摸出的这个小球上标记的数字,是偶数的概率为故答案为:;(2)解:画树状图如下,由树状图可知,共有9种等可能的结果,摸出的这两个小球标记的数字之和为7的结果有3种,摸出的这两个小球标记的数字之和为7的概率为【考点】本题主要考查了利用概率公式计算概率及树状图法求概率,正确画出树状图是解题关键5、 (1)总人数50个人,见解析;(2)340;(3)见解析,【解

27、析】【分析】(1)利用C组的人数除以它所占的百分比即可得到总人数,再计算出E组人数,然后计算出A组人数后补全频数分布直方图;(2)先计算出该校学生体育选修课选修篮球(A)的学生占总体的百分比,再利用总人数乘以求出的百分比即可;(3)利用列表法展示所有12种等可能的结果数,再找出选出的2人恰好1人选修篮球,1人选修足球的结果数,然后根据概率公式求解(1)解:总人数1224%50(人),E组的人数5010%5(人),所以A组的人数507129517(人),频数分布直方图为:(2)解:由(1)可估计该校学生体育选修课选修篮球(A)的学生占总体的百分比为100%34%100034%340(人)答:估计该校学生体育选修课选修篮球(A)的学生约有340人(3)解:列表如下:ABBCAABABACBABBBBCBABBBBCCACBCBC共有12种等可能的结果数,其中选出的2人恰好1人选修篮球,1人选修足球的结果数为4,所以选出的2人恰好1人选修篮球,1人选修足球的概率【考点】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率也考查了统计图

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1