1、人教版九年级数学上册第二十二章二次函数同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,对于点,若,则称点P为“同号点”,下列函数的图象上不存在“同号点”的是()ABCD2、关于
2、抛物线:,下列说法正确的是()A它的开口方向向上B它的顶点坐标是C当时,y随x的增大而增大D对称轴是直线3、在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是()ABCD4、已知二次函数yax24ax+3与x轴交于A、B两点,与y轴交于点C,若SABC3,则a()ABC1D15、根据下列表格的对应值:x6.176.186.196.20ax2bxc0.020.010.010.04判断方程ax2bxc0(a0,a,b,c为常数)一个解x的取值范围是()A6x6.17B6.17x6.18C6.18x6.19D6.19x6.206、若函数y(a1)x2+2x+a21是二次
3、函数,则()Aa1Ba1Ca1Da17、如图,抛物线交轴于点,交轴于点若点坐标为,对称轴为直线,则下列结论错误的是()A二次函数的最大值为BCD8、已知二次函数的图象上有两点A(x1,2023)和B(x2,2023),则当时,二次函数的值是()A2020B2021C2022D20239、如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,BC的长y米,菜园的面积为S(单位:平方米) 当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是()A一次函数关系,二次函数关系B反比例函数关系,二次函数关系C一次函数关系,反比
4、例函数关系D反比例函数关系,一次函数关系10、把抛物线的图象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、二次函数y=ax2+bx+c(a0)图象上部分点的坐标(x,y)对应值列表如下:x-3-2-101y-4-3-4-7-12则该图象的对称轴是_2、如果抛物线y(m1)x2有最低点,那么m的取值范围为_3、二次函数的部分图象如图所示,由图象可知,方程的解为_;不等式的解集为_4、抛物线图象与轴无交点,则的取值范围为;5、若直线y=m(m为常数)与函数y=的图象有三个不同的交点,则常数m的取值
5、范围_三、解答题(5小题,每小题10分,共计50分)1、如图,已知二次函数与轴交于、两点(点位于点的左侧),与轴交于点,已知的面积是6(1)求的值;(2)在抛物线上是否存在一点,使存在请求出坐标,若不存在请说明理由2、在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少生产该产品每盒需要原料和原料,每盒还需其他成本9元市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒 (1)求每盒产品的成本(成本原料费其他成本);(2)设每盒产品的售价是元(是整数),每天的
6、利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润3、已知抛物线过点(1)求抛物线的解析式;(2)点A在直线上且在第一象限内,过A作轴于B,以为斜边在其左侧作等腰直角若A与Q重合,求C到抛物线对称轴的距离;若C落在抛物线上,求C的坐标4、某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个(1)请直接写出y(个)与x(元)之间的函数关
7、系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?5、今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:购票方式甲乙丙可游玩景点和门票价格100元/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票
8、的游客和400人原计划购买乙种门票的游客改为购买丙种门票若丙种门票价格下降10元,求景区六月份的门票总收入;问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?-参考答案-一、单选题1、C【解析】【分析】由题意,图象经过第一和第三象限的函数都是满足条件的,由此判断即可【详解】解:由题意,图象经过第一和第三象限的函数都是满足条件的,函数的图象在二、四象限,不满足条件,故选:C【考点】本题考查了反比函数的性质,一次函数的性质,二次函数的性质可以用特值法进行快速的排除2、C【解析】【分析】根据题目中的抛物线和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答
9、本题【详解】A选项:,抛物线的开口向下,故A错误;B选项:抛物线的顶点坐标是,故B错误;C选项:对抛物线,当时,y随x增大而增大,故C正确;D选项:抛物线的对称轴是直线,故D错误故选:C【考点】本题考查二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答3、D【解析】【分析】根据二次函数与一次函数的图象可知,从而判断出二次函数的图象【详解】解:二次函数的图象开口向上,次函数的图象经过一、三、四象限,对于二次函数的图象,开口向上,排除A、B选项;,对称轴,D选项符合题意;故选:D【考点】本题考查了一次函数的图象以及二次函数的图象,根据二次函数的图象和一次函数图象经过的象限,找出,是解题的
10、关键4、D【解析】【分析】由根与系数的关系求得AB的长度,由抛物线解析式求得点C的坐标,然后根据列出关于的方程,解方程即可【详解】令,则ax24ax+30,x1+x24,x1x2,AB|x1x2|,令x0,y3,OC3,SABCABOC,故选:D【考点】本题考查了二次函数与坐标轴交点的问题,一元二次方程根与系数的关系,熟练掌握一元二次方程跟与系数的关系是解题关键5、C【解析】【分析】根据在6.18和6.19之间有一个值能使ax2+bx+c的值为0,于是可判断方程ax2+bx+c=0一个解x的范围【详解】解:由 ,得 时 随 的增大而增大,得 时, ,时, ,的一个解x的取值范围是 ,故选:C【
11、考点】本题考查了估算一元二次方程的近似解,解答此题的关键是利用函数的增减性6、A【解析】【分析】利用二次函数定义进行解答即可【详解】解:由题意得:a10,解得:a1,故选:A【考点】本题主要考查了二次函数的定义,准确计算是解题的关键7、D【解析】【分析】根据抛物线的开口方向、对称轴、顶点坐标、与x轴、y轴的交点以及过特殊点时相应的系数a、b、c满足的关系进行综合判断即可【详解】解:抛物线yax2bxc过点A(4,0),对称轴为直线x1,因此有:x1,即2ab0,因此选项D符合题意;当x1时,yabc的值最大,选项A不符合题意;由抛物线的对称性可知,抛物线与x轴的另一个交点为(2,0),当x1时
12、,yabc0,因此选项B不符合题意;抛物线与x轴有两个不同交点,因此b24ac0,故选项C不符合题意;故选:D【考点】本题考查二次函数的图象和性质,掌握抛物线的位置与系数a、b、c的关系是正确判断的前提8、C【解析】【分析】根据A、B两点纵坐标一样,且都在函数图像上,得出x1、x2是方程2020x2+2021x+2022=2023的两个根,由韦达定理得到,代入解析式即可得解【详解】解:二次函数的图象上有两点A(,2023)和B(,2023),、是方程的两个根,当时,有:,故选C【考点】本题考查了二次函数与一元二次方程的关系、韦达定理;关键在于能发现题干所给条件的特点,会运用韦达定理9、A【解析
13、】【分析】根据题意求得y和S与x的函数关系式,然后由函数关系式可直接进行判别即可【详解】解:由题意可知:,则,即,y与x满足一次函数关系菜园的面积:,S与x满足二次函数的关系故选A【考点】本题主要考查一次函数与二次函数的应用,熟练掌握一次函数与二次函数的应用是解题的关键10、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可【详解】解:抛物线的顶点坐标为(2,1),向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)所得抛物线解析式是故选:A【考点】本题考查了二次函数图象的平移,利用顶点的变化确定
14、抛物线解析式的变化更简便二、填空题1、【解析】【分析】根据二次函数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴【详解】解:由表格可得,当x取-3和-1时,y值相等,该函数图象的对称轴为直线,故答案为:【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答2、m1【解析】【分析】直接利用二次函数的性质得出m1的取值范围进而得出答案【详解】解:抛物线y=(m1)x2有最低点,m10,解得:m1故答案为m1【考点】本题考查了二次函数的性质,正确掌握二次函数的性质是解题的关键3、 , 或【解析】【分析】根据抛物线的对称轴和抛物线与x轴
15、一个交点求出另一个交点,再通过二次函数与方程的两根,二次函数与不等式解集的关系求得答案【详解】抛物线的对称轴为,抛物线与x轴一个交点为(5,0)抛物线与x轴另一个交点为(-1,0)方程的解为:,由图像可知,不等式的解集为:或故答案为:,;或【考点】本题考查了二次函数的图像性质,掌握二次函数与方程的两根,二次函数与不等式的解集关系,是解决问题的关键4、【解析】【分析】根据题意和题目中的函数解析式,可以得到顶点的纵坐标小于0,然后代入数据计算即可【详解】解:抛物线图象与轴无交点,该抛物线开口向下,且,即: ,解之得:,故答案为:【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,明确题意,
16、利用二次函数的性质解答是解答本题的关键5、0m4【解析】【分析】首先作出分段函数y=的图象,根据函数的图象即可确定m的取值范围【详解】解:分段函数y=的图象如图:故要使直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,常数m的取值范围为0m4故答案为0m4【考点】本题考查了二次函数的图象及反比例函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一三、解答题1、(1);(2)存在,点的坐标为或或【解析】【分析】(1)根据求出A,B,C的坐标,再由的面积是6得到关于a的方程即可求解;(2)根据得到点的纵坐标为3,分别代入解析式即可求解【详解】
17、(1),令,则,令,即解得,由图象知:,解得:,(舍去);(2),.点的纵坐标为3,把代入得,解得或,把代入得,解得或,点的坐标为或或【考点】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的应用2、(1)每盒产品的成本为30元(2);(3)当时,每天的最大利润为16000元;当时,每天的最大利润为元【解析】【分析】(1)设原料单价为元,则原料单价为元然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;(2)直接根据“总利润=单件利润销售数量”列出解析式即可;(3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可【详解】解:(1)设原料单价为元,
18、则原料单价为元依题意,得解得,经检验,是原方程的根每盒产品的成本为:(元)答:每盒产品的成本为30元(2);(3)抛物线的对称轴为=70,开口向下当时,a=70时有最大利润,此时w=16000,即每天的最大利润为16000元;当时,每天的最大利润为元【考点】本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键3、(1);(2)1;点C的坐标是【解析】【分析】(1)将两点分别代入,得,解方程组即可;(2)根据AB=4,斜边上的高为2,Q的横坐标为1,计算点C的横坐标为-1,即到y轴的距离为1;根据直线PQ的解析式,设点A(m,-2m+6)
19、,三角形ABC是等腰直角三角形,用含有m的代数式表示点C的坐标,代入抛物线解析式求解即可.【详解】解:(1)将两点分别代入,得解得所以抛物线的解析式是(2)如图2,抛物线的对称轴是y轴,当点A与点重合时,作于H是等腰直角三角形,和也是等腰直角三角形,点C到抛物线的对称轴的距离等于1如图3,设直线PQ的解析式为y=kx+b,由,得解得直线的解析式为,设,所以所以将点代入,得整理,得因式分解,得解得,或(与点P重合,舍去)当时,所以点C的坐标是【点评】本题考查了抛物线解析式的确定,一次函数解析式的确定,等腰直角三角形的性质,一元二次方程的解法,熟练掌握待定系数法,灵活用解析式表示点的坐标,熟练解一
20、元二次方程是解题的关键4、(1)y=-2x+220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【解析】【分析】(1)根据题意中销售量y(个)与售价x(元)之间的关系即可得到结论;(2)根据题意列出方程(-2x+220)(x-40)=2400,解方程即可求解;(3)设每星期利润为w元,构建二次函数模型,利用二次函数性质即可解决问题【详解】(1)由题意可得,y=100-2(x-60)=-2x+220;(2)由题意可得,(-2x+220)(x-40)=2400,解得,当销售单价是70元或80元时
21、,该网店每星期的销售利润是2400元答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元(3)设该网店每星期的销售利润为w元,由题意可得w=(-2x+220)(x-40)=,当时,w有最大值,最大值为2450,当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【考点】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题5、(1)20%;(2)798万元,当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【解析】【分析】(1)设
22、四月和五月这两个月中,该景区游客人数的月平均增长率为,则四月份的游客为人,五月份的游客为人,再列方程,解方程可得答案;(2)分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;设丙种门票价格降低元,景区六月份的门票总收入为万元,再列出与的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,由题意,得 解这个方程,得(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%(2)由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:(万人),购买甲种门票的人数为:(万人),购买乙种门票的人数为:(万人),所以:门票收入问;(万元)答:景区六月份的门票总收入为798万元设丙种门票价格降低元,景区六月份的门票总收入为万元,由题意,得化简,得, ,当时,取最大值,为817.6万元 答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【考点】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键