收藏 分享(赏)

2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx

上传人:a**** 文档编号:641084 上传时间:2025-12-12 格式:DOCX 页数:35 大小:799.64KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第1页
第1页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第2页
第2页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第3页
第3页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第4页
第4页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第5页
第5页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第6页
第6页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第7页
第7页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第8页
第8页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第9页
第9页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第10页
第10页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第11页
第11页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第12页
第12页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第13页
第13页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第14页
第14页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第15页
第15页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第16页
第16页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第17页
第17页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第18页
第18页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第19页
第19页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第20页
第20页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第21页
第21页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第22页
第22页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第23页
第23页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第24页
第24页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第25页
第25页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第26页
第26页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第27页
第27页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第28页
第28页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第29页
第29页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第30页
第30页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第31页
第31页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第32页
第32页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第33页
第33页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第34页
第34页 / 共35页
2022-2023学年度人教版九年级数学上册第二十三章旋转专项训练试题(含解析).docx_第35页
第35页 / 共35页
亲,该文档总共35页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十三章旋转专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列面点烘焙模具中,其图案是中心对称图形的是()ABCD2、在方格纸中,选择标有序号中的一个小正方形涂黑,与图中

2、阴影部分构成中心对称图形该小正方形的序号是()ABCD3、下列四个图形中,中心对称图形是()ABCD4、已知四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,那么这个四边形是()A是中心对称图形,但不是轴对称图形B是轴对称图形,但不是中心对称图形C既是中心对称图形,又是轴对称图形D既不是中心对称图形,又不是轴对称图形5、二次函数的图象的顶点坐标是,且图象与轴交于点将二次函数的图象以原点为旋转中心顺时针旋转180,则旋转后得到的函数解析式为()ABCD6、已知点P坐标为,将线段OP绕原点O逆时针旋转90得到线段,则点P的对应点的坐标为()ABCD7、如图,将斜边为4,且一个角为30的直

3、角三角形AOB放在直角坐标系中,两条直角边分别与坐标轴重合,D为斜边的中点,现将三角形AOB绕O点顺时针旋转120得到三角形EOC,则点D对应的点的坐标为()A(1,)B(,1)C(2,2)D(2,2)8、如图,在坐标系中放置一菱形 OABC,已知ABC=60,点 B 在 y 轴上,OA=1,先将菱形 OABC 沿 x 轴的正方向无滑动翻转,每次翻转 60,连续翻转2019次,点 B 的落点依次为 B1,B2,B3,则 B2 019 的坐标为()A(1010,0)B(13105, )C(1345, )D(1346,0)9、已知两点,若,则点与()A关于y轴对称B关于x轴对称C关于原点对称D以上

4、均不对10、如图,在中,将绕点顺时针旋转得到,点A、B的对应点分别是,点是边的中点,连接,则下列结论错误的是()AB,CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将n个边长都为1cm的正方形按如图所示摆放,点A1, A2,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为 _2、如图,将矩形绕点逆时针旋转,连接,当为_时3、在ABC中,ABAC3,BC2,将ABC绕着点B顺时针旋转,如果点A落在射线BC上的点A处那么AA_4、如图,正方形ABCD的边长是5,E是边BC上一点且BE2,F为边AB上的一个动点,连接EF,以EF为边向右作等边三角形

5、EFG,连接CG,则CG长的最小值为_5、如图,两块完全一样的含30角的三角板完全重叠在一起,若绕长直角边中点M转动,使上面一块三角板的斜边刚好经过下面一块三角板的直角顶点,已知A30,BC2,则此时两直角顶点C,C间的距离是 _三、解答题(5小题,每小题10分,共计50分)1、如图,在等腰ABC中,点D为直线BC上一动点(点D不B、C重合),以AD为边向右侧作正方形ADEF,连接CF【猜想】如图,当点D在线段BC上时,直接写出CF、BC、CD三条线段的数量关系【探究】如图,当点D在线段BC的延长线上时,判断CF、BC,CD三条线段的数量关系,并说明理由【应用】如图,当点D在线段BC的反向延长

6、线上时,点A、F分别在直线BC两侧,AEDF交点为点O连接CO,若,则 2、在平面直角坐标系中,四边形是矩形,点,点,点以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为,记旋转角为(1)如图,当时,求点的坐标;(2)如图,当点落在的延长线上时,求点的坐标;(3)当点落在线段上时,求点的坐标(直接写出结果即可)3、在RtABC中,BAC90,ABAC,动点D在直线BC上(不与点B,C重合),连接AD,把AD绕点A逆时针旋转90得到AE,连接DE,F,G分别是DE,CD的中点,连接FG【特例感知】(1)如图1,当点D是BC的中点时,FG与BD的数量关系是,FG与直线BC的位置关系是;【猜想论

7、证】(2)当点D在线段BC上且不是BC的中点时,(1)中的结论是否仍然成立?请在图2中补全图形;若成立,请给出证明;若不成立,请说明理由【拓展应用】(3)若ABAC=,其他条件不变,连接BF、CF当ACF是等边三角形时,请直接写出BDF的面积4、在中,将绕点C顺时针旋转一定的角度得到,点A、B的对应点分别是D、E(1)当点E恰好在AC上时,如图1,求的大小;(2)若时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形(请用两组对边分别相等的四边形是平行四边形)5、如图,在ABC中,ABAC,P是 ABC内的一点,且APBAPC,求证:PBPC(反证法)-参考答案-一、单选题1、D【解

8、析】【分析】根据中心对称图形的性质得出图形旋转180,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可【详解】解:A.不是中心对称图形,不符合题意;B.不是中心对称图形,不符合题意;C.不是中心对称图形,不符合题意;D.是中心对称图形,符合题意;故选:D【考点】此题主要考查了中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键2、B【解析】【分析】直接利用中心对称图形的性质得出答案即可【详解】解:如图,把标有序号的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,故选B【考点】本题考查了利用旋转设计图案和中心对称图形的定义,要知道,一个图形绕端点旋转180所

9、形成的图形叫中心对称图形3、D【解析】【分析】根据中心对称图形的概念结合各图形的特点求解【详解】解:A、不是中心对称图形,不符合题意; B、不是中心对称图形,不符合题意; C、不是中心对称图形,不符合题意; D、是中心对称图形,符合题意 故选:D【考点】本题考查了中心对称图形与轴对称图形的概念判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合4、C【解析】【分析】先根据已知条件OA=OB=OC=OD,可知四边形ABCD的对角线相等且互相平分,得出四边形ABCD是矩形,然后根据矩形的对称性,得出结果【详解】解:如图所示:四边形ABCD的对角线相交于点O且OA=OB=OC=OD,OA

10、=OC,OB=OD;AC=BD,四边形ABCD是矩形,四边形ABCD既是轴对称图形,又是中心对称图形故选:C【考点】本题主要考查了矩形的判定及矩形的对称性对角线相等且互相平分的四边形是矩形,矩形既是轴对称图形,又是中心对称图形5、C【解析】【分析】设将二次函数的图象以原点为旋转中心顺时针旋转180后为:;根据旋转的性质,得的图象的顶点坐标是,且图象与轴交于点,得,再通过列方程并求解,即可得到表达式并转换为顶点式,即可得到答案【详解】设将二次函数的图象以原点为旋转中心顺时针旋转180后为:二次函数的图象的顶点坐标是,且图象与轴交于点的图象的顶点坐标是,且图象与轴交于点 , 故选:C【考点】本题考

11、查了二次函数、旋转的知识;解题的关键是熟练掌握二次函数图像及解析式、旋转的性质,从而完成求解6、B【解析】【分析】如图,作轴于,轴于,证明,有,进而可得点坐标【详解】解:如图,作轴于,轴于,在和中,故选B【考点】本题考查了绕原点旋转90的点坐标,三角形全等的判定与性质解题的关键在于熟练掌握旋转的性质7、A【解析】【分析】根据题意画出AOB绕着O点顺时针旋转120得到的AOB,连接OD,OD,过D作DMy轴,由旋转的性质得到DOD120,根据ADBDOD2,得到AOD度数,进而求出MOD度数为30,在直角三角形OMD中求出OM与MD的长,即可确定出D的坐标.【详解】解:根据题意画出AOB绕着O点

12、顺时针旋转120得到的AOB,连接OD,OD,过D作DMy轴,DOD120,D为斜边AB的中点,ADODAB2, BAODOA30,MOD30,在RtOMD中,ODOD2,MD1,OM=,则D的对应点D的坐标为(1,),故选:A.【考点】此题考查旋转的性质,直角三角形斜边中线等于斜边的一半的性质,30度角所对的直角边等于斜边的一半的性质,勾股定理,正确掌握旋转的性质得到对应的旋转图形进行解答是解题的关键.8、D【解析】【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4由于2019=3366+3,因此点向右平移(即)即可到达点

13、,根据点的坐标就可求出点的坐标【详解】连接AC,如图所示四边形OABC是菱形,OA=AB=BC=OCABC=60,ABC是等边三角形AC=ABAC=OAOA=1,AC=1由图可知:每翻转6次,图形向右平移42019=3366+3,点B3向右平移1344(即3364)到点B2019B3的坐标为(2,0),B2019的坐标为(1346,0),故选:D【考点】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力发现“每翻转6次,图形向右平移4”是解决本题的关键9、C【解析】【分析】首先利用等式求出 然后可以根据横纵坐标的关系得出结果【详解】, 两点,点与关于原点对称,

14、故选:C【考点】本题主要考查平面直角坐标系中关于原点对称的点,属于基础题,利用等式找到点与横纵坐标的关系是解题关键10、D【解析】【分析】根据旋转的性质可判断A;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C;利用等腰三角形的性质和含30角的直角三角形的性质可判断D【详解】A将ABC绕点C顺时针旋转60得到DEC,BCE=ACD=60,CB=CE,BCE是等边三角形,BE=BC,故A正确; B点F是边AC中点,CF=BF=AF=AC,BCA=30,BA=AC,BF=AB=AF=CF,FCB=FBC=30,延长BF交

15、CE于点H,则BHE=HBC+BCH=90,BHE=DEC=90,BF/ED,AB=DE,BF=DE,故B正确CBFED,BF=DE,四边形BEDF是平行四边形,BC=BE=DF, AB=CF, BC=DF,AC=CD,ABCCFD,故C正确;DACB=30, BCE=60,FCG=30,FG=CG,CG=2FGDCE=CDG=30,DG=CG,DG=2FG故D错误故选D【考点】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键二、填空题1、【解析】【分析】根据题意可得

16、,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和【详解】由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为4,n个这样的正方形重叠部分(阴影部分)的面积和为(n-1)=cm2【考点】本题考查了正方形的性质,熟悉正方形的性质是解题关键2、60【解析】【分析】连接,过作于,交于,根据等腰三角形的性质与判定得,进而得到垂直平分,证得为等边三角形便可【详解】解:连接,过作于,交于,如下图,要使,则,四边形和四边形都是矩形,垂直平分,由旋转性质知,是等边三角形,故当为时,故答案为:【考点】本题主

17、要考查了矩形的性质,旋转的性质,等边三角形的性质与判定,关键是证明垂直平分3、2【解析】【分析】作AHBC于H,如图,利用等腰三角形的性质得BHCHBC1,利用勾股定理可计算出AH2,再根据旋转的性质得BABA3,则HA2,然后利用勾股定理可计算出AA的长【详解】解:作AHBC于H,如图,ABAC3,BC2,BHCHBC1,AH,ABC绕着点B顺时针旋转,如果点A落在射线BC上的点A处,BABA3,HA2,在RtAHA中,AA故答案为2【考点】此题考查旋转的性质,等腰三角形的性质,解题关键在于掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等4、【解

18、析】【分析】由题意分析可知,点F为主动点,运动轨迹是线段AB,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,也是一条线段,之后通过垂线段最短构造直角三角形获得CG最小值【详解】解:由题意可知,点F是主动点,点G是从动点,点F在线段AB上运动,点G的轨迹也是一条线段,将EFB绕点E旋转60,使EF与EG重合,得到EFBEGH,从而可知EBH为等边三角形,四边形ABCD是正方形,FBE=90,GHE=FBE=90,点G在垂直于HE的直线HN上,延长HG交DC于点N,过点C作CMHN于M,则CM即为CG的最小值,过点E作EPCM于P,可知四边形HEPM为矩形,PEC=30,EPC

19、=90,则CM=MP+CP=HE+EC=2+=,故答案为:【考点】本题考查了线段最值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是最值问题中比较典型的类型5、【解析】【分析】先求解,由旋转的性质可得可证是等边三角形,即可求的长【详解】解:如图,连接, 点M是AC中点, AM=CM=, 旋转, , ,是等边三角形 故答案为:【考点】本题考查了等边三角形的判定,勾股定理的应用,旋转的性质,熟练运用旋转的性质是解本题的关键三、解答题1、【猜想】CD= BC- CF,理由见解析;【探究】CF= BC+ CD,理由见解析;【应用】

20、【解析】【分析】【猜想】 利用SAS证明BADCAF,得出BD= CF,然后根据线段的和差关系可得结论;【探究】利用SAS证明BADCAF,得出BD= CF,然后根据线段的和差关系可得出结论;【应用】 利用SAS证明BADCAF,得出BD= CF,ACF=ABD = 135,求出DCF= 90,在RtDCF中利用勾股定理求出DF,利用直角三角形的斜边中线的性质可得结论【详解】解:【猜想】CD= BC- CF,理由如下:BAC=90,AB=AC,ABC=ACB=45,四边形ADEF是正方形,AD= AF,DAF= 90=BAC,BAD=FAC,在BAD和CAF中, ,BADCAF (SAS),B

21、D= CF,CD= BC- BD,CD= BC- CF:解:【探究】CF= BC+ CD,理由如下:BAC= 90,AB= AC,ABC=ACB=45,四边形 ADEF是正方形, AD= AF,DAF= 90,BAD=BAC +DAC,CAF=DAF+DAC,在BAD和CAF中, ,BADCAF (SAS),BD= CF,BD= BCCD,CF= BC+CD;解:【应用】BAC= 90,AB= AC,ABC=ACB=45,四边形ADEF是正方形,AD= AF,DAF= 90,BAC=DAF,BAD=CAF,在BAD和CAF中,BADCAF (SAS),BD=CF,ACF=ABD= 180- 4

22、5= 135,,FCD=ACF-ACB = 90,FCD为直角三角形, ,CD= BC+ BD, CD = BC+CF= 2+1=3, ,正方形ADEF中,O为DF中点, ,故答案为: 【考点】本题是四边形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,正方形的性质,直角三角形斜边中线的性质等知识点,解题的关键是能够综合运用运用有关的知识解决问题2、(1)点的坐标为;(2)点的坐标为;(3)点的坐标为【解析】【分析】(1) 过点作轴于根据已知条件可得出AD=6,再直角三角形ADG中可求出DG,AG的长,即可确定点D的坐标.(2) 过点作轴于于可得出,根据勾股定理得出AE的长为1

23、0,再利用面积公式求出DH,从而求出OG,DG的长,得出答案(3) 连接,作轴于G,由旋转性质得到,从而可证,继而可得出结论.【详解】解:(1)过点作轴于,如图所示:点,点,以点为中心,顺时针旋转矩形,得到矩形,在中,点的坐标为;(2)过点作轴于于,如图所示:则,点的坐标为;(3)连接,作轴于G,如图所示:由旋转的性质得:, ,在和中,点的坐标为【考点】本题考查的知识点是坐标系内矩形的旋转问题,用到的知识点有勾股定理,全等三角形的判定与性质等,做此类题目时往往需要利用数形结合的方法来求解,根据每一个问题做出不同的辅助线是解题的关键.3、(1)FG=BD,FGBC;(2)补全图形见解析;结论仍然

24、成立,理由见解析;(3)BDF的面积为或【解析】【分析】(1)根据等腰直角三角形的性质以及中位线定理可得结果;(2)根据题意画出图形即可;根据旋转的性质证明ABDACE,结合中位线定理证明结论;(3)分两种情况进行讨论:当点D在点B的左侧时;当点D在点C的右侧时,分别画出图形结合等边三角形的性质解答【详解】(1)BAC90,ABAC,点D是BC的中点,ADBC,ADBDCD,ABCACB45,F,G分别是DE,CD的中点,FGAD,FGAD,FGBD,FGBC,故答案为:FGBD,FGBC;(2)补全图形如图所示;结论仍然成立,理由如下:如图2,连接CE,把AD绕点A逆时针旋转90得到AE,B

25、ACDAE90,ADAE,BADCAE,又ABAC,ABDACE(SAS),CEBD,ACEBACB45,DCE90,F,G分别是DE,CD的中点,FGCEBD,FGCE,FGBC;(3)当点D在点B的左侧时,如图31中,作AMBC于M,连接FG,BAC90,ABAC,AMBC,BC2,BMCMAMBC1,BAMCAM45,ADAE,DAE90,点F是DE中点,EAFCAM45,AFFDEF,AFC是等边三角形,AFACFC,FACAFCACF60,CAE15BAD,ADMABCBAD30,DMAM,BDDMBM,由(2)的结论可得:FGBC,FGBD,BDF的面积;当点D在点C的右侧时,如图

26、32中,作AMBC于M,连接FG,BAC90,ABAC,AMBC,BC2,BMCMAMBC1,BAMCAM45,ADAE,DAE90,点F是DE中点,EAFCAM45,AFFDEF,DAF45,AFC是等边三角形,AFACFC,FACAFCACF60,CADCAFDAF15,ADMACBCAD30,DMAM,BDDM+BM1,由(2)的结论可得:FGBC,FGBD,BDF的面积综上所述:BDF的面积为或【考点】本题考查了等腰三角形的性质,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,熟练掌握以上性质定理是解本题的关键4、 (1)(2)见解析【解析】【分析】(1)根据旋转的性质可得CA

27、CD,ECDBCA30,DECABC90,根据等边对等角即可求出CADCDA75,再根据直角三角形的两个锐角互余即可得出结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得BFAC,然后根据30所对的直角边是斜边的一半即可求出ABAC,从而得出 BFAB,然后证出ACD和BCE为等边三角形,再利用HL证出CFDABC,证出DFBE,即可证出结论(1)解:ABC绕点C顺时针旋转得到DEC,点E恰好在AC上,CACD,ECDBCA30,DECABC90,CADCDA(18030)75,ADE90CAD15(2)证明:如图2,连接AD,点F是边AC中点,BFAF=CFAC,ACB30,ABAC,

28、BF=CFAB,ABC绕点C顺时针旋转60得到DEC,BCEACD60,CBCE,DEAB,DC=AC,DEBF,ACD和BCE为等边三角形,BECB,点F为ACD的边AC的中点,DFAC,在RtCFD和RtABC中,RtCFDRtABC,DFBC,DFBE,而BFDE,四边形BEDF是平行四边形【考点】本题主要考查的是旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定,掌握旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定是解决此题的关键5、见解析【解析】【分析】假设PBPC,从假设出发推出与已知相矛盾,得到假设不成立,则结论成立【详解】证明:假设PBPC,如图,把ABP绕点A逆时针旋转,使点B与点C重合,得到ADC,连接PD,;,即,这与APBAPC相矛盾,PBPC不成立,PBPC【考点】此题主要考查了反证法的应用,解此题关键要懂得反证法的意义及步骤

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1