ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:275.46KB ,
资源ID:640827      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-640827-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新教材2022版高考人教A版数学一轮复习单元质检卷十 概率、随机变量及其分布 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

新教材2022版高考人教A版数学一轮复习单元质检卷十 概率、随机变量及其分布 WORD版含解析.docx

1、单元质检卷十概率、随机变量及其分布(时间:100分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”2.袋中装有5个大小相同的球,其中有2个白球,2个黑球,1个红球,现从袋中每次取出1球,取出后不放回,直到取到有两种不同颜色的球时即终止,用X表示终止取球时所需的取球次数,则随机变量X的数学期望E

2、(X)是()A.115B.125C.135D.1453.一试验田某种作物一株生长果实个数x服从正态分布N(90,2),且P(x70)=0.2,从试验田中随机抽取10株,果实个数在90,110的株数记作随机变量X,且X服从二项分布,则X的方差为()A.3B.2.1C.0.3D.0.214.有朋自远方来,他乘火车、船、汽车、飞机来的概率分别为0.3,0.2,0.1,0.4,他乘坐上述四种交通工具迟到的概率依次分别为0.25,0.3,0.1,0.则他迟到的概率为()A.0.65B.0.075C.0.145D.05.8张卡片上分别写有数字1、2、3、4、5、6、7、8,从中随机取出2张,记事件A=“所

3、取2张卡片上的数字之和为偶数”,事件B=“所取2张卡片上的数字之和小于9”,则P(B|A)=()A.16B.13C.12D.236.(2020湖北襄阳高三检测)排球比赛的规则是5局3胜制(无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都相等,均为23,前2局中乙队以20领先,则最后乙队获胜的概率是()A.49B.1927C.1127D.40817.写算,是一种格子乘法,也是笔算乘法的一种,用以区别筹算与珠算,它由明代数学家吴敬在其撰写的九章算法比类大全一书中提出,是从天元式的乘法演变而来.例如计算8965,将被乘数89计入上行,乘数65计入右行.然后以乘数65的每位数字乘被乘数89的每

4、位数字,将结果计入相应的格子中,最后从右下方开始按斜行加起来,满十向上斜行进一,如图,即得5785.类比此法画出648345的表格,若从表内(表周边数据不算在内)任取一数,则恰取到奇数的概率是()A.518B.13C.1318D.238.(2019浙江宁波六校联考,5)设随机变量X的分布列如下:X0123P0.1a0.30.4则方差D(X)=()A.0B.1C.2D.3二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲

5、罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是()A.P(B)=25B.P(B|A1)=511C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件10.设离散型随机变量X的分布列为X01234Pq0.40.10.20.2若离散型随机变量Y满足Y=2X+1,则下列结果正确的有()A.q=0.1B.E(X)=2,D(X)=1.4C.E(X)=2,D(X)=1.8D.E(Y)=5,D(Y)=7.211.近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷

6、款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布N(,302)和N(280,402),则下列选项正确的是()附:若随机变量X服从正态分布N(,2),则P(-X+)0.682 7.A.若红玫瑰日销售量范围在-30,280的概率是0.682 7,则红玫瑰日销售量的平均数约为250B.白玫瑰日销售量比红玫瑰日销售量更集中C.红玫瑰日销售量比白玫瑰日销售量更集中D.白玫瑰日销售量范围在280,320的概率约为0.341 3512.一袋中有大小相同的4个红球和2个白球,给出下列结论,其中正确的命题有()A.从中任取3球,恰有一个白球的概率是35B.

7、从中有放回地取球6次,每次任取一球,恰好有两次白球的概率为80243C.现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25D.从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627三、填空题:本题共4小题,每小题5分,共20分.13.(2020江西南昌模拟)辊子是客家传统农具,南方农民犁开田地后,仍有大的土块.农人便用六片叶齿组成辊轴,两侧装上木板,人跨开两脚站立,既能掌握平衡,又能增加重量,让牛拉动辊轴前进,压碎土块,以利于耕种.这六片叶齿又对应着菩萨六度,即布施、持戒、忍辱、精进、禅定与般若.若甲、乙每人依次有放回地从这六片叶齿中随

8、机取一片,则这两人选的叶齿对应的“度”相同的概率为.14.随机变量的分布列如下表:-101P14ab若E()=0,则D()=.15.甲、乙、丙三位学生用计算机联网学习数学,每天上课后独立完成6道自我检测题,甲及格的概率为45,乙及格的概率为35,丙及格的概率为710,三人各答一次,则三人中只有一人及格的概率为.16.抛一枚质地均匀的硬币,正、反面出现的概率都是12,反复这样的抛掷,数列an定义如下:an=1(第n次抛掷出现正面),-1(第n次抛掷出现反面),若Sn=a1+a2+an(nN*),则事件“S8=2”的概率为;事件“S20且S8=2”的概率为.四、解答题:本题共6小题,共70分.解答

9、应写出文字说明、证明过程或演算步骤.17.(10分)在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有4个小球,小球上分别写有0,1,2,3的数字,小球除数字外其他完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回.抽奖活动的奖励规则是:若取出的两个小球上数字之积大于4,则奖励飞机玩具一个;若取出的两个小球上数字之积在区间1,4上,则奖励汽车玩具一个;若取出的两个小球上数字之积小于1,则奖励饮料一瓶.(1)求每对亲子获得飞机玩具的概率.(2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.18.

10、(12分)在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层随机抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表一:男生男生等级优秀合格尚待改进频数15x5表二:女生女生等级优秀合格尚待改进频数153y(1)求x,y的值;(2)从表一、表二中所有尚待改进的学生中随机抽取3人进行交谈,记其中抽取的女生人数为X,求随机变量X的分布列及均值;(3)由表中统计数据填写下列22列联表,依据=0.1的独立性检验,能否认为测评结果优秀与性别有关联.测评结果男生女生总计优

11、秀非优秀总计45参考公式:2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.参考数据:0.100.050.01x2.7063.8416.63519.(12分)某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程数”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,得到他们的电动汽车的“实际平均续航里程数”.从年龄在40岁以下的客户中抽取10位归为A组,从年龄在40岁(含40岁)以上的客户中抽取10位归为B组,将他们的电动汽车的“实际平均续航里程数”整理成下图,其中“+”表示A组的客户,“”表示B组的客户.注:“实际平均续航里程数”是指电动汽车的行驶

12、总里程与充电次数的比值.(1)记A,B两组客户的电动汽车的“实际平均续航里程数”的平均值分别为m,n,根据图中数据,试比较m,n的大小(结论不要求证明);(2)从A,B两组客户中随机抽取2位,求其中至少有一位是A组的客户的概率;(3)如果客户的电动汽车的“实际平均续航里程数”不小于350,那么称该客户为“驾驶达人”,从A,B两组客户中,各随机抽取1位,记“驾驶达人”的人数为,求随机变量的分布列及其数学期望E().20.(12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交

13、通事故的情况相联系,发生交通事故的次数越多,费率就越高,具体浮动情况如表:交强险浮动因素和浮动费率比率表浮动因素浮动比率A1上一个年度未发生有责任道路交通事故下浮10%A2上两个年度未发生有责任道路交通事故下浮20%A3上三个及以上年度未发生有责任道路交通事故下浮30%A4上一个年度发生一次有责任不涉及死亡的道路交通事故0%A5上一个年度发生两次及两次以上有责任道路交通事故上浮10%A6上一个年度发生有责任道路交通死亡事故上浮30%某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:类型A1A2A3A4A5A6数

14、量201010302010以这100辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国机动车交通事故责任强制保险条例汽车交强险价格的规定,a=950(元),记X为某同学家的一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望.(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5 000元,一辆非事故车盈利10 000元.若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求该销售商获得利润的期望值.21.

15、(12分)某公司年会举行抽奖活动,每位员工均有一次抽奖机会.活动规则如下:一只盒子里装有大小相同的6个小球,其中3个白球,2个红球,1个黑球,抽奖时从中依次摸出3个小球.若所得的小球同色,则获得一等奖,奖金为300元;若所得的小球颜色互不相同,则获得二等奖,奖金为200元;若所得的小球恰有2个同色,则获得三等奖,奖金为100元.(1)求小张在这次活动中获得的奖金数X的分布列及数学期望;(2)若每个人获奖与否互不影响,求该公司某部门3个人中至少有2个人获二等奖的概率.22.(12分)某市为了制定扶贫战略,统计了全市1 000户农村贫困家庭的年纯收入,并绘制了如下频率分布直方图:(1)若这1 00

16、0户家庭中,家庭年纯收入不低于5千元,且不超过7千元的户数为40户,请补全频率分布图,并求出这1 000户家庭的年纯收入的平均值x(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图,可以认为这1 000户的家庭年纯收入X服从正态分布N(,2),其中近似为年纯收入的平均值x,2近似为样本方差,经计算知2=9.26;设该市的脱贫标准为家庭年纯收入为x千元(即家庭年纯收入不低于x千元,则该户家庭实现脱贫,否则未能脱贫),若根据此正态分布估计,这1 000户家庭中有841.35户家庭实现脱贫,试求该市的脱贫标准x;(3)若该市为了加大扶贫力度,拟投入一笔资金,帮助未脱贫家庭脱贫,脱贫家庭

17、巩固脱贫成果,真正做到“全面小康路上一个也不能少”,方案如下:对家庭年纯收入不超过5.92千元的家庭每户家庭给予扶持资金15千元,对家庭年纯收入超过5.92千元,但不超过8.96千元的家庭每户家庭给予扶持资金12千元,对家庭年纯收入超过8.96千元,但不超过15.04千元的家庭每户家庭给予扶持资金8千元,对家庭年纯收入超过15.04千元的家庭不予以资金扶持,设Y为每户家庭获得的扶持资金,求E(Y)(结果精确到0.001).附:若随机变量XN(,2),则P(-X+)0.682 7,P(-2X+2)0.954 5,9.263.04.参考答案单元质检卷十概率、随机变量及其分布1.CA,B中的两个事件

18、都不是互斥事件;C中的两个事件是互斥而不对立的两个事件;D中的两个事件是对立事件.2.AX的可能取值为2,3,P(X=3)=2514+2514=15,P(X=2)=1-P(X=3)=45,E(X)=452+153=115,故选A.3.BxN(90,2),且P(x110)=0.2,P(90x110)=0.5-0.2=0.3,XB(10,0.3),X的方差为100.3(1-0.3)=2.1.故选B.4.C设事件A1为“他乘火车来”,A2为“他乘船来”,A3为“他乘汽车来”,A4为“他乘飞机来”,B为“他迟到”.易见A1,A2,A3,A4构成一个完备事件组,由全概率公式得P(B)=i=14P(Ai)

19、P(B|Ai)=0.30.25+0.20.3+0.10.1+0.40=0.145.5.C事件AB为“所取2张卡片上的数字之和为小于9的偶数”,以(a,b)为一个样本点,则事件AB包含的样本点有(1,3),(1,5),(1,7),(2,4),(2,6),(3,5),共6个,由古典概型的概率公式可得P(AB)=6C82=314,事件A为“所取2张卡片上的数字之和为偶数”,则所取的两个数全是奇数或全是偶数,由古典概型的概率公式可得P(A)=2C42C82=37,因此,P(B|A)=P(AB)P(A)=31473=12,故选C.6.B最后乙队获胜事件含3种情况:第三局乙胜,其概率为13;第三局甲胜,第

20、四局乙胜,其概率为2313=29;第三局和第四局都是甲胜,第五局乙胜23213=427.故最后乙队获胜的概率P=13+29+427=1927.7.A根据题意,结合范例画出648345的表格,从表格中可以看出,共有18个数,其中奇数有5个,所以从表内任取一数,恰取到奇数的概率为P=518.8.Ba=1-0.1-0.3-0.4=0.2,E(X)=10.2+20.3+30.4=2,E(X2)=10.2+40.3+90.4=5,D(X)=E(X2)-E(X)2=5-4=1,故选B.9.BD易见A1,A2,A3是两两互斥的事件,故D正确,P(B|A1)=511,故B正确,P(B)=P(BA1)+P(BA

21、2)+P(BA3)=510511+210411+310411=922,故A不正确,事件B与事件A1不相互独立,故C不正确,故选BD.10.ACD因为q+0.4+0.1+0.2+0.2=1,所以q=0.1,故A正确;又E(X)=00.1+10.4+20.1+30.2+40.2=2,D(X)=(0-2)20.1+(1-2)20.4+(2-2)20.1+(3-2)20.2+(4-2)20.2=1.8,故C正确;因为Y=2X+1,所以E(Y)=2E(X)+1=5,D(Y)=4D(X)=7.2,故D正确.11.ACD对于选项A,+30=280,=250,正确;对于选项B,C,利用越小越集中,30小于40

22、,B不正确,C正确;对于选项D,由于白玫瑰的日销量X服从正态分布N(280,402),所以P(280X320)0.682712=0.34135,正确.12.ABD选项A,从中任取3球,恰有一个白球的概率是C42C21C63=35,故正确;选项B,从中有放回的取球6次,每次任取一球,每次抽到白球的概率为26=13,则恰好有两次白球的概率为C62234132=80243,故正确;选项C,现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为C41C31C41C51=35,故错误;选项D,从中有放回的取球3次,每次任取一球,每次抽到红球的概率为46=23,则至少有一次

23、取到红球的概率为1-C30133=2627,故正确.13.16记布施,持戒,忍辱,精进,禅定,般若分别为a,b,c,d,e,f,则样本点有(a,a),(a,b),(a,c),(a,d),(a,e),(a,f),(b,a),(b,b),(b,c),(b,d),(b,e),(b,f),(c,a),(c,b),(c,c),(c,d),(c,e),(c,f),(d,a),(d,b),(d,c),(d,d),(d,e),(d,f),(e,a),(e,b),(e,c),(e,d),(e,e),(e,f),(f,a),(f,b),(f,c),(f,d),(f,e),(f,f),共36个,其中符合条件的有6个

24、,故所求概率P=636=16.14.12E()=0,由表中数据可知E()=(-1)14+0a+1b=0,解得b=14.又14+a+b=1,a=12.所以D()=(-1-0)214+012+(1-0)214=12.15.47250因为甲及格的概率为45,乙及格的概率为35,丙及格的概率为710,所以仅甲及格的概率为451-351-710=24250;仅乙及格的概率为1-45351-710=9250;仅丙及格的概率为1-451-35710=14250.三人中只有一人及格的概率为24250+9250+14250=47250.16.73213128事件S8=2表示反复抛掷8次硬币,其中出现正面的次数是

25、5次.其概率P=C85125123=732.事件“S20,S8=2”表示前两次全正或全负,则概率为C63128+C65128=13128.17.解(1)样本点总数有16个,分别为(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),记“获得飞机玩具”为事件A,则事件A包含的样本点有3个,分别为(2,3),(3,2),(3,3),每对亲子获得飞机玩具的概率p=316.(2)记“获得汽车玩具”为事件B,“获得饮料”为事件C,事件B包含的样本点有6个,分别为(1,

26、1),(1,2),(1,3),(2,1),(2,2),(3,1),每对亲子获得汽车玩具的概率P(B)=616=38,每对亲子获得饮料的概率P(C)=1-P(A)-P(B)=716,每对亲子获得汽车玩具的概率小于获得饮料的概率.18.解(1)设从高一年级男生中抽取m人,则m500=45500+400,解得m=25,则从女生中抽取20人,所以x=25-15-5=5,y=20-15-3=2.(2)表一、表二中所有尚待改进的学生共7人,其中女生有2人,则X的所有可能的取值为0,1,2.P(X=0)=C53C73=1035=27,P(X=1)=C52C21C73=2035=47,P(X=2)=C51C2

27、2C73=535=17.则随机变量X的分布列为X012P274717所以X的均值E(X)=270+471+172=67.(3)22列联表如下:测评结果男生女生总计优秀151530非优秀10515总计252045零假设为H0:测评结果优秀与性别无关联.2=45(155-1510)230152520=451525230152520=98=1.1252.706=x0.1.依据=0.1的独立性检验,没有充分证据推断H0不成立,因此可认为H0成立,即认为测评结果优秀与性别有关联.19.解(1)mn.(2)设“从抽取的20位客户中任意抽取2位,至少有一位是A组的客户”为事件M,则P(M)=C101C101

28、+C102C202=2938.所以从抽取的20位客户中任意抽取2位至少有一位是A组的客户的概率是2938.(3)依题意的可能取值为0,1,2.则P(=0)=C91C81C101C101=1825;P(=1)=C11C81+C91C21C101C101=1350;P(=2)=C11C21C101C101=150.所以随机变量的分布列为012P18251350150所以随机变量的数学期望E()=01825+11350+2150=310,即E()=310.20.解(1)由题意可知,X的可能取值为0.9a,0.8a,0.7a,a,1.1a,1.3a,由统计数据可知:P(X=0.9a)=15,P(X=0

29、.8a)=110,P(X=0.7a)=110,P(X=a)=310,P(X=1.1a)=15,P(X=1.3a)=110,X的分布列为X0.9a0.8a0.7aa1.1a1.3aP1511011031015110E(X)=0.9a15+0.8a110+0.7a110+a310+1.1a15+1.3a110=9.810a=931.(2)由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为310,三辆车中至多有一辆事故车的概率为P=C3031001-3103+C3131011-3102=0.784.设Y为该销售商购进并销售一辆二手车的利润,Y的可能取值为-5000,10000,P(Y=

30、-5000)=310,P(Y=10000)=710,Y的分布列为Y-500010000P310710E(Y)=-5000310+10000710=5500.该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望值为100E(Y)=550000(元)=55(万元).21.解(1)小张在这次活动中获得的奖金数X的所有可能取值为100,200,300.P(X=300)=C33C63=120,P(X=200)=C31C21C11C63=620=310,P(X=100)=C32C31+C22C41C63=9+420=1320,或P(X=100)=1-P(X=200)-P(X=300)=1320

31、所以奖金数X的概率分布列为X100200300P1320310120奖金数X的数学期望E(X)=1001320+200310+300120=140.(2)设3个人中获二等奖的人数为Y,则YB3,310,所以P(Y=k)=C3k310k7103-k(k=0,1,2,3),设“该公司某部门3个人中至少有2个人获二等奖”为事件A,则P(A)=P(Y=2)+P(Y=3)=C323102710+C333103=27125.则该公司某部门3个人中至少有2个人获二等奖的概率为27125.22.解(1)家庭年纯收入不低于5千元且不超过7千元的频率为401000=0.04,纵坐标为0.02;家庭年纯收入不低于1

32、5千元,但不超过17千元的家庭频率为1-2(0.02+0.05+0.12+0.16+0.06+0.04)=0.1,纵坐标为0.05,补全频率分布直方图如下图:这1000户家庭的年纯收入的平均值为x=60.04+80.1+100.24+120.32+140.12+160.1+180.08=12.(2)1000户家庭中有841.35户家庭实现脱贫,则未脱贫概率为1-841.351000=0.15865,设该市的脱贫标准为x,则P(xX2-x)1-0.158652=0.6827,根据P(-X+)0.6827,得脱贫标准x=-=12-9.2612-3.04=8.96.(3)=12,=9.26=3.04

33、,-2=5.92,-=8.96,+=15.04,家庭年纯收入不超过5.92千元的家庭频率为P(X5.92)=P(X-2)1-0.95452=0.02275,家庭年纯收入超过5.92千元,但不超过8.96千元的家庭频率为P(5.92X8.96)=P(-2-)0.9545-0.68272=0.1359,家庭年纯收入超过8.96千元,但不超过15.04千元的家庭频率为P(8.96X15.04)=P(-15.04)=P(X+)1-0.68272=0.15865,则每户家庭获得的扶持资金Y的数学期望E(Y)=150.02275+120.1359+80.6827+00.15865=7.433657.434.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3