1、填空题解题方法归纳总结探索规律法探索规律法的解题方法是直接通过对填空题的条件,作详尽的分析、归纳和判断,从而得出正确的结果。当遇到寻找规律的命题时,常用此法。典型例题: 例1:设N=2n(nN*,n2),将N个数x1,x2,,xN依次放入编号为1,2,N的N个位置,得到排列P0=x1x2xN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列P1=x1x3xN-1x2x4xN,将此操作称为C变换,将P1分成两段,每段个数,并对每段作C变换,得到;当2in-2时,将Pi分成2i段,每段个数,并对每段C变换,得到Pi+1,例如,当N=8时,P2=x1x5x3x
2、7x2x6x4x8,此时x7位于P2中的第4个位置.(1)当N=16时,x7位于P2中的第 个位置;(2)当N=2n(n8)时,x173位于P4中的第 个位置.【答案】(1)6;(2)。【考点】演绎推理的基本方法,进行简单的演绎推理。【解析】(1)当N=16时, ,可设为,即为,即, x7位于P2中的第6个位置。(2)考察C变换的定义及(1)计算可发现:第一次C变换后,所有的数分为两段,每段的序号组成公差为2的等差数列,且第一段序号以1为首项,第二段序号以2为首项;第二次C变换后,所有的数据分为四段,每段的数字序号组成以为4公差的等差数列,且第一段的序号以1为首项,第二段序号以3为首项,第三段
3、序号以2为首项,第四段序号以4为首项;依此类推可得出P4中所有的数字分为16段,每段的数字序号组成以16为公差的等差数列,且一到十六段的首项的序号分别为1,9,5,13,由于173=1610+13,故x173位于以13为首项的那一段的第11个数,由于N=2n(n8)故每段的数字有2n-4个,以13为首项的是第四段,故x173位于第个位置。例2:数列an的通项公式,前n项和为Sn,则S2 012 .【答案】3018。【考点】规律探索题。【解析】寻找规律:a11cos11,a22cos11,a33cos11,a44cos215;a55cos11,a66cos315,a77cos11,a88cos1
4、9;该数列每四项的和。20124=503,S2 01265033018。例3:(2012年陕西省理5分) 观察下列不等式,照此规律,第五个不等式为 .【答案】。【考点】归纳规律。【解析】由题设中所给的三个不等式归纳出它们的共性:左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方;右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,得出第n个不等式,即可得到通式:。令n=5,即可得出第五个不等式,即。例4:下图是一个算法流程图,则输出的k的值是 【答案】5。【考点】程序框图。【分析】根据流程图所示的顺序,程序的运行过程中变量值变化如下表:是否继续循环
5、k循环前00第一圈是10第二圈是22第三圈是32第四圈是40第五圈是54第六圈否输出5 最终输出结果k=5。例5:(2012年湖北省理5分)阅读如图所示的程序框图,运行相应的程序,输出的结果s= .【答案】9。【考点】程序框图。【解析】用列举法,通过循环过程直接得出s与n的值,得到n=3时退出循环,即可循环前,S=1,a=3,第1次判断后循环,n=2,s=4,a=5,第2次判断并循环n=3,s=9,a=7,第3次判断n退出循环,输出s =9。例6:数列满足,则的前项和为 【答案】。【考点】分类归纳(数字的变化类),数列。【解析】求出的通项:由得, 当时,;当时,;当时,;当时,;当时,;当时,
6、;当时,;当时,;当时,;当时,;当时,;当时,()。,的四项之和为()。设()。则的前项和等于的前15项和,而是首项为10,公差为16的等差数列,的前项和=的前15项和=。例7:回文数是指从左到右与从右到左读都一样的正整数。如22,,11,3443,94249等。显然2位回文数有9个:11,22,33,99.3位回文数有90个:101,111,121,191,202,999。则()4位回文数有 个;()2n1(nN+)位回文数有 个。【答案】()90;()。【考点】计数原理的应用。【解析】(I)4位回文数的特点为中间两位相同,千位和个位数字相同但不能为零,第一步,选千位和个位数字,共有9种选
7、法;第二步,选中间两位数字,有10种选法,故4位回文数有910=90个。(II)第一步,选左边第一个数字,有9种选法;第二步,分别选左边第2、3、4、n、n+1个数字,共有10101010=10n种选法,故2n+1(nN+)位回文数有个。例8:(2012年湖北省文5分)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数。他们研究过如图所示的三角形数:将三角形数1,3, 6,10,记为数列,将可被5整除的三角形数按从小到大的顺序组成一个新数列,可以推测:()是数列中的第项;() =。(用表示)【答案】()5030;()。【考点】归纳规律。【解析】由以上规律可知三角形数1,3,6,10,的一个通项公式为,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,发现其中能被5整除的为10,15,45,55,105,110。故。从而由上述规律可猜想:(为正整数),。故,即是数列中的第5030项。