1、京改版八年级数学上册期中考试练习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知 ,则 的值是()ABC2D-22、化简的结果正确的是()ABCD3、已知a2b0,则代数式的值为()A1BC
2、D24、下列二次根式中,与是同类二次根式的是()ABCD5、若是二元一次方程组的解,则x2y的算术平方根为()A3B3C D 二、多选题(5小题,每小题4分,共计20分)1、下列计算正确的是()ABCD2、在下列各式中不正确的是()A=2B=3C=8D=23、下列各式计算正确的是()ABCD4、如果,那么下列等式正确的是()ABCD5、下列各式中,当x取某一值时没有意义的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、对于任意有理数a,b,定义新运算:ab=a22b+1,则2(6)=_2、请写一个比小的无理数.答:_3、当时,代数式的值是_4、写出一个比大
3、且比小的整数_5、如果分式有意义,那么x的取值范围是 _四、解答题(5小题,每小题8分,共计40分)1、计算(1);(2)2、求下列各式的值:(1);(2)3、计算:(1);(2)4、(1)因式分解:;(2)解方程:5、计算:(1)(2)-参考答案-一、单选题1、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键2、D【解析】【分析】首先比较与3的大小,然后由绝对值的意义,化简即可得到答案【详解】解:3-30即:;故选:D【考点】本题考查了绝对值的意义,解题的关键是掌握负数的绝对值是它的相反数3、B【解析】【分
4、析】把a2b0代入代数式整理后约分可得【详解】解:因为a2b0,所以故选:B【考点】本题考查分式的化简求值,将代数式进行化简是解题的关键4、A【解析】【分析】先将各式化为最简二次根式,再利用同类二次根式定义判断即可【详解】解:A、原式,符合题意;B、原式,不符合题意;C、原式,不符合题意;D、原式不能化简,不符合题意故选:A【考点】此题考查了同类二次根式,几个二次根式化为最简二次根式后,被开方数相同的即为同类二次根式5、C【解析】【分析】将代入二元一次方程组中解出和的值,再计算的算术平方根即可【详解】解:将代入二元一次方程中,得到:,得: 所有方程组的解是: 的算术平方根为,故选:C【考点】本
5、题考查了二元一次方程组的解法,算术平方根的概念,解题的关键是熟练掌握二元一次方程组的解法二、多选题1、BD【解析】【分析】根据二次根式的加减乘除法则计算即可【详解】A:不是同类二次根式,无法进行计算,故A错误;B:,故B正确;C:,故C错误;D:,故D正确;故选:BD【考点】本题考查二次根式的加减乘除,熟知运算法则是解题的关键2、ABC【解析】【分析】根据算术平方根和平方根的定义逐一判断即可【详解】解:A ,故本选项符合题意;B ,故本选项符合题意;C ,故本选项符合题意;D ,故本选项不符合题意故选ABC【考点】此题考查的是求一个数的算术平方根和平方根,掌握算术平方根和平方根的定义是解决此题
6、的关键3、AD【解析】【分析】根据二次根式的加法法则及幂指数的有关运算法则计算【详解】解:A、根据乘法公式,(ab)2=a22ab+b2,正确;B、,错误; C、因为 被开方数不同,所以左边两数不能相加,错误; D、,正确,故选AD【考点】本题考查幂指数与二次根式的综合应用,熟练掌握二次根式的加法法则及幂指数的有关运算法则是解题关键4、BC【解析】【分析】先判断a,b的符号,然后根据二次根式的性质逐项分析即可【详解】解,A、无意义,选项错误,不符合题意;B、,选项正确,符合题意;C、,选项正确,符合题意;D、 ,选项错误,不符合题意;故选BC【考点】本题考查了二次根式的乘法,二次根式的除法,以
7、及二次根式的性质,熟练掌握性质是解答本题的关键5、ABC【解析】【分析】根据分式有意义,分母不等于0对各选项分析判断即可得解【详解】解:A、当x=-即2x+1=0时,分式无意义,故本选项符合题意;B、当x=-即2x+1=0时,分式无意义,故本选项符合题意;C、当x=0即=0时,分式无意义,故本选项符合题意;D、无论x取何值,2x2+11,分式都有意义,故本选项不符合题意;故选:ABC【考点】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义分母为零;(2)分式有意义分母不为零三、填空题1、17【解析】【分析】根据公式代入计算即可得到答案.【详解】ab=a22b+1,
8、2(6)=222(6)+1=4+12+1=17.故答案为:17.【考点】此题考查新定义计算公式,正确理解公式并正确计算是解题的关键.2、(答案不唯一)【解析】【分析】根据无理数的定义填空即可.【详解】解:比小的无理数如:(答案不唯一),故答案为(答案不唯一).【考点】本题考查了无理数的定义及比较无理数大小,比较基础3、【解析】【分析】先根据分式的加减乘除运算法则化简,然后再代入x求值即可【详解】解:由题意可知:原式,当时,原式,故答案为:【考点】本题考查了分式的加减乘除混合运算,属于基础题,运算过程中细心即可求解4、2(或3)【解析】【分析】先分别求出与在哪两个相邻的整数之间,依此即可得到答案
9、【详解】12,34,比大且比小的整数是2或3故答案为:2(或3)【考点】本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出与在哪两个相邻的整数之间是解答此题的关键5、x1【解析】【分析】根据分式有意义的条件分母不为0,即可解答【详解】若分式有意义,则,解得:故答案为:【考点】本题考查使分式有意义的条件掌握分式的分母不能为0是解题关键四、解答题1、(1) ;(2)【解析】【分析】(1)根据负整数指数幂以及零指数幂运算即可求解;(2)根据同底数幂相乘(除),底数不变,指数相加(减),即可求解【详解】解:(1)原式;(2)原式【考点】本题目考查整数指数幂,涉及知识点有正整数指数幂、零
10、指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键2、(1);(2)0【解析】【分析】(1)根据立方根定义先将原式中的和计算出来,然后再相加即可得到结果;(2)根据立方根定义先将原式中的、和计算出来,然后再加减即可得到结果【详解】(1);(2)【考点】本题考查立方根,熟练掌握立方根的性质是解决本题的关键3、(1);(2)【解析】【分析】(1)根据乘法分配律相乘,再化简二次根式即可;(2)先用完全平方公式进行计算,再合并即可【详解】解:(1)= =(2) =【考点】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则和乘法公式进行准确计算4、(1);(2)x=4【解析】【分析】(1)先提取公因式,再利用完全平方公式进行分解因式,即可;(2)通过去分母,合并同类项移项,未知数系数化为1,检验,即可求解【详解】解:(1)原式=;(2),去分母得:,即:,解得:x=4,经检验:x=4是方程的解【考点】本题主要考查分解因式,解分式方程,掌握提取公因式和完全平方公式以及取去分母,是解题的关键5、 (1)(2)1+6【解析】【分析】(1)直接化简二次根式,进而利用二次根式的加减运算法则计算得出答案;(2)直接化简二次根式,再利用二次根式的乘除运算法则计算得出答案(1)(2)【考点】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有