ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:1.12MB ,
资源ID:638914      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-638914-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省南通市2018-2019学年高一数学下学期期末考试试题(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省南通市2018-2019学年高一数学下学期期末考试试题(含解析).doc

1、江苏省南通市2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:本题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合Mxx0,Nxx0,则( )A. MNB. MUNRC. MND. NM【答案】C【解析】【分析】根据具有包含关系的两个集合的交集与并集的性质求得结果.【详解】因为,所以有,所以有,所以只有C是正确的,故选C.【点睛】该题考查的是有关集合的问题,涉及到的知识点有判断两集合的关系,具备包含关系的两集合的交并运算的性质,属于简单题目.2.函数定义域为( )A. (一,0B. 0,)C. (0,)D. (,)【答案】A

2、【解析】【分析】根据偶次根式的条件,借助于指数函数的单调性求得结果.【详解】由题意得,解得,所以函数的定义域是,故选A.【点睛】该题考查的是有关函数定义域的求解问题,属于简单题目.3.在ABC中,M是BC的中点若,则( )A. B. C. D. 【答案】D【解析】【分析】根据向量的加法的几何意义即可求得结果.【详解】在中,M是BC的中点,又,所以,故选D.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目.4.在平面直角坐标系xoy中,已知直线l上的一点向右平移2个单位长度,再向下平移4个单位长度后,仍在该直线上,则直线l的斜率为( )A. 2B. C. D. 2

3、【答案】A【解析】【分析】首先设出直线l上的一点,进而求得移动变换之后点,根据点在直线上,利用两点斜率坐标公式求得斜率,从而求得结果.【详解】根据题意,设点是直线l上的一点,将点向右平移2个单位后再向下平移4个单位得到点,由已知有:点仍在该直线上,所以直线的斜率,所以直线l的斜率为,故选A.【点睛】该题考查的是有关直线的斜率问题,涉及到的知识点有平移变换,两点斜率坐标公式,属于简单题目.5.已知函数sinx与的图象的一个交点的横坐标为,则( )A. B. C. D. 【答案】B【解析】【分析】首先根据题中的条件,得到,从而求得,根据题中所给的,进而求得结果.【详解】由题意得,所以,所以,因为,

4、所以,故选B.【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有诱导公式,已知三角函数值求角,属于简单题目.6.下列说法正确的为如果两条直线同时平行于第三条直线,那么这两条直线平行;如果两条直线同时垂直于第三条直线,那么这两条直线平行;如果两条直线同时平行于一个平面,那么这两条直线平行;如果两条直线同时垂直于一个平面,那么这两条直线平行( )A. B. C. D. 【答案】D【解析】【分析】由平行线的传递性,根据公里四得到其正确性;如果两条直线同时垂直于第三条直线,则两直线可以平行,可以相交,也可以异面,从而得到其错误;如果两条直线同时平行于一个平面,则两直线可以平行,可以相交,也可以异

5、面从而得到其错误;根据线面垂直的性质得到其正确性;从而得到正确结果.【详解】由平行线的传递性:平行于同一直线的两直线平行,所以正确;如果两条直线同时垂直于第三条直线,则两直线可以平行,可以相交,也可以异面,所以不正确;如果两条直线同时平行于一个平面,则两直线可以平行,可以相交,也可以异面,所以不正确;垂直于同一平面的两直线平行,所以正确;所以正确的说法是,故选D.【点睛】该题考查的是有关空间立体几何的问题,涉及到的知识点有直线平行的传递性,直线的垂直关系,线面平行,线面垂直,属于简单题目.7.从两个班级各随机抽取5名学生测量身高(单位:cm),甲班的数据为169,162,150,160,159

6、,乙班的数据为180,160,150,150,165据此估计甲、乙两班学生的平均身高,及方差,的关系为( )A. ,B. ,C. ,D. ,【答案】C【解析】【分析】利用公式求得和,从而得到和的大小,观察两组数据的波动程度,可以得到与的大小,从而求得结果.【详解】甲班平均身高,乙班平均身高,所以,方差表示数据的波动,当波动越大时,方差越大,甲班的身高都差不多,波动比较小,而乙班身高差距则比加大,波动比较大,所以,故选C.【点睛】该题考查的是有关所给数据的平均数与方差的比较大小的问题,涉及到的知识点有平均数的公式,观察数据波动程度来衡量方差的大小,属于简单题目.8.函数的图象大致为( )A. B

7、. C. D. 【答案】D【解析】【分析】首先判断函数的定义域,结合,从而得到为奇函数,得到函数图象关于原点对称,利用相应的自变量对应的函数值的变化趋势,从而将不满足条件的项排除,从而求得结果.【详解】函数定义域关于原点对称,所以为奇函数,图象关于原点对称,所以先排除B,当时,排除A,当时,排除C,故选D.【点睛】该题考查的是有关函数图象的识别问题,关于图象的选择问题,可以通过函数的定义域,函数图象的对称性,函数的单调性,函数值的符号,函数图象所过的特殊点,将正确选项选出来,属于中档题目.9.ABC的内角A,B,C的对边分别为a,b,c,若A60,b10,则结合a的值解三角形有两解的为( )A

8、. a8B. a9C. a10D. a11【答案】B【解析】【分析】根据正弦定理得到,分情况讨论,得到正确的结果.【详解】由正弦定理知,由题意知,若,则,只有一解;若,则AB,只有一解;从而要使的值解三角形有两解,则必有,且,即,解得,即,因此只有B选项符合条件,故选B.【点睛】该题考查的是有关根据三角形的解的个数选择边长的可取值的问题,涉及到的知识点有正弦定理,属于简单题目.10.己知函数定义在R上的周期为4的奇函数,且当0x2时,函数,则方程的解的个数为( )A. 4B. 6C. 8D. 10【答案】C【解析】【分析】首先根据题中所给的条件,画出函数在区间上的图象,利用对称性画出区间上的图

9、象,利用函数的周期画出函数在区间上的图象,之后在同一坐标系中画出的图象,利用两图象交点的个数求得结果.【详解】因为函数定义在R上的周期为4的奇函数,且当0x2时,所以画出函数的图象,在同一坐标系中画出的图象,如图所示:观察图象可知两个函数图象有8个交点,其中右边3个交点,左边5个交点,所以方程有8个解,故选C.【点睛】该题考查的是有关方程解的个数问题,在解题的过程中,将方程解 个数转化为函数图象交点的个数,涉及到的知识点有奇函数图象的对称性,函数的周期性,属于中档题目.二、填空题:本题共6小题,每小题5分,共30分。11.已知角终边上一点P(-3,4),则sin_【答案】【解析】【分析】根据三

10、角函数的定义即可求解.【详解】解:已知角a的终边经过点,故答案为:【点睛】本题主要考查三角函数的定义,熟记定义,即可求解,属于基础题型.12.已知平面向量的夹角为,则_【答案】1【解析】【分析】利用向量数量积的定义式求解即可.【详解】根据题意可得,故答案是1.【点睛】该题考查的是有关平面向量数量积的求解问题,涉及到的知识点有平面向量数量积的定义式,属于简单题目.13.某校共有学生1600人,其中高一年级400人为了解各年级学生的兴趣爱好情况,用分层抽样的方法从中抽取容量为80的样本,则应抽取高一学生_人【答案】20【解析】【分析】利用分层抽样方法直接求解.【详解】由题意,应抽取高一学生(人),

11、故答案是20.【点睛】该题考查的是有关分层抽样中某层所抽个体数的问题,涉及到的知识点有分层抽样要求每个个体被抽到的概率是相等的,列式求得结果,属于简单题目.14.在棱长为1的正方体ABCDA1B1C1D1中,点E是棱B1B的中点,则三棱锥D1DEC1的体积为_.【答案】【解析】【分析】首先根据题意,画出几何图形,之后将三棱锥的顶点和底面转换,利用等积法求得结果.【详解】根据题意,画出图形,如图所示:结合正方体的性质,以及椎体的体积公式,可以求得:,故答案是:.【点睛】该题考查的是有关椎体体积的计算问题,涉及到的知识点有等级法求三棱锥的体积,椎体体积公式,属于简单题目.15.筒车是我国古代发明的

12、一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,如左下图假定在水流量稳定的情况下,半径为3m的筒车上的每一个盛水桶都按逆时针方向作角速度为rad/min的匀速圆周运动,平面示意图如右下图,己知筒车中心O到水面BC的距离为2m,初始时刻其中一个盛水筒位于点P0处,且P0OA(OA/BC),则8min后该盛水筒到水面的距离为_m【答案】【解析】【分析】由题意可得转动8分钟之后盛水桶所转过的角度,从而确定出其所在的位置,结合三角函数的有关知识,求得点P到水面的距离.【详解】根据题意可得,8分钟后盛水桶所转过的角为,而除去一圈,所以转8分钟之后P0所转到的位置P满足 ,所以点P到水面距离

13、,故答案是:.【点睛】该题考查的是有关三角函数的应用问题,涉及到的知识点有角速度的应用,三角函数的定义式,属于简单题目.16.过点P(t,t)作圆C:(x一2)2y21的两条切线,切点为A,B,若直线AB过点(2,),则t_.【答案】8【解析】【分析】根据圆的方程得到圆C的圆心坐标和圆的半径,从而求得以为直径的圆的方程,将两圆方程相减,求得两圆公共弦所在直线的方程,根据直线过点的条件,得到关于的等量关系式,最后求得结果.【详解】因为圆C:的圆心为,所以以为直径的圆的方程为,即,可得:,即直线的方程为,因为直线过点,所以,解得,故答案是:8.【点睛】该题考查的是有关圆的问题,涉及到的知识点有以某

14、条线段为直径的圆的方程,两圆的公共弦所在直线的方程,点在直线上的条件,属于中档题目.三、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.已知点O(0,0),A(2,一1),B(一4,8)(1)若点C满足,求点C的坐标;(2)若与垂直,求k【答案】(1);(2).【解析】【分析】(1)设出C点的坐标,利用终点减起点坐标求得和的坐标,利用向量运算坐标公式,得到满足的条件求得结果;(2)利用向量坐标运算公式求得,利用向量垂直的条件,得到等量关系式,求得结果.【详解】(1)因为,所以设点C的坐标为,则 由,得解得,所以点C的坐标为(2),因为与垂直,所以,解得.【点睛】该

15、题考查的是有关向量的问题,涉及到的知识点有向量坐标运算公式及法则,向量垂直的条件,数量积坐标公式,属于简单题目.18.如图,在三棱柱ABCA1B1C1中,ABBC,D为AC的中点,O为四边形B1C1CB的对角线的交点,ACBC1求证:(1)OD平面A1ABB1;(2)平面A1C1CA平面BC1D【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)连结,根据三棱柱的性质,得到四边形为平行四边形,从而得到O为的中点,结合题的条件,得到,利用线面平行的判定定理证得结果;(2)利用等腰三角形,得到,又因为,之后应用线面垂直的判定定理证得平面,再应用面面垂直的判定定理证得平面平面【详解】证明:

16、(1)连结,在三棱柱中,四边形为平行四边形,从而O为平行四边形对角线的交点,所以O为的中点又D是AC的中点,从而在,中,有,又平面,平面,所以平面(2)在中,因为,D为AC的中点,所以又因为,平面,所以平面,因为平面,所以平面平面【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,面面垂直的判定,属于简单题目.19.如图,在梯形ABCD中,ABCD,CD2,ABC是边长为3的等边三角形(1)求AD;(2)求sinDAB【答案】(1);(2).【解析】【分析】(1)利用平行线的性质以及题的条件,得到,利用余弦定理求得的长度;(2)法1:在中,应用正弦定理求得的值,利用同旁内角

17、互补以及诱导公式求得sinDAB的值;法2:利用余弦定理求得的值,利用同角三角函数关系求得,利用正弦和角公式求得sinDAB的值.【详解】(1)在梯形ABCD中,因为,是边长为3的等边三角形,所以,在中,由余弦定理,得,所以 (2)法1:在中,由正弦定理,得,结合(1)知,因为,所以从而 法2:在中,由余弦定理,得结合(1)知,从而所以【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有平行线的性质,余弦定理,正弦定理,同角三角函数关系式,属于简单题目.20.己知点,直线l与圆C:(x一1)2(y一2)24相交于A,B两点,且OAOB(1)若直线OA方程为y一3x,求直线OB被圆C截得的弦

18、长;(2)若直线l过点(0,2),求l的方程【答案】(1);(2).【解析】【分析】(1)根据题意,求得直线OB的方程,利用点到直线的距离公式求得圆心到直线OB的距离,之后应用圆中的特殊三角形,求得弦长;(2)根据题意,可判断直线的斜率是存在的,设出其方程,与圆的方程联立,得到两根和与两根积,根据OAOB,利用向量数量积等于零得到所满足的等量关系式,求得结果.【详解】(1)因为直线OA的方程为,所以直线OB的方程从而圆心到直线OB的距离为:所以直线OB被团C截得的弦长为:(2)依题意,直线l斜率必存在,不妨设其为k,则l的方程为,又设,由得,所以,从而所以 因为,所以,即,解得所以l的方程为

19、【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有两直线垂直的条件,直线被圆截得的弦长,直线方程的求解,属于简单题目.21.已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里小时)(0v3)的以下数据:012300.71.63.3为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Qav3bv2cv,Q05va,Qklogavb(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用【答案】(1)选择

20、函数模型,函数解析式为;(2)以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为2.1万元.【解析】【分析】(1)对题中所给的三个函数解析式进行分析,对应其性质,结合题中所给的条件,作出正确的选择,之后利用待定系数法求得解析式,得出结果;(2)根据题意,列出函数解析式,之后应用配方法求得最值,得到结果.【详解】(1)若选择函数模型,则该函数在上为单调减函数,这与试验数据相矛盾,所以不选择该函数模型若选择函数模型,须,这与试验数据在时有意义矛盾,所以不选择该函数模型从而只能选择函数模型,由试验数据得,即,解得故所求函数解析式为:(2)设超级快艇在AB段的航行费用为y(万元),则所需

21、时间为(小时),其中,结合(1)知,所以当时,答:当该超级快艇以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为21万元【点睛】该题考查的是有关函数的应用题,涉及到的知识点有函数模型的正确选择,等量关系式的建立,配方法求二次式的最值,属于简单题目.22.已知函数.(1)若f(1)f(1),求a,并直接写出函数的单调增区间;(2)当a时,是否存在实数x,使得一?若存在,试确定这样的实数x的个数;若不存在,请说明理由【答案】(1),单调增区间为,;(2)2个.【解析】【分析】(1)首先根据题中所给的函数解析式,利用,得到所满足的等量关系式,求得的值,从而得到函数的解析式,进而求得函数

22、的单调增区间;(2)根据条件,结合函数解析式,分类讨论,分析性质,【详解】(1)由,得,解得此时,函数所以函数的单调增区间为,(2)显然,不满足;若,则,由,得,化简,得,无解:若,则,由,得,化简,得令,当时,;下面证明函数在上是单调增函数任取,且,则由于,所以,即,故在上是单调增函数。因为,所以,又函数的图象不间断,所以函数在上有且只有一个零点即当时,有且只有一个实数x满足因为当满足时,实数也一定满足,即满足的根成对出现(互为相反数);所以,所有满足的实数x的个数为2【点睛】该题考查的是有关函数解析式中参数的确定,分段函数的单调区间的求解,是否存在类问题的求解思路,分类讨论思想的应用,属于较难题目.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3