1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期末测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、将一副直角三角板ABC和EDF如图放置(其中A=60,F=45),使点E
2、落在AC边上,且ED/BC,则AEF的度数为()A145B155C165D1702、如图,1、2、3中是ABC外角的是()A1、2B2、3C1、3D1、2、33、若点和点关于轴对称,则点在()A第一象限B第二象限C第三象限D第四象限4、北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是()ABCD5、如图,点在的延长线上,于点,交于点若,则的度数为()A65B70C75D85二、多选题(5小题,每小题4分,共计20分)1、如图,和的平分线相交于点F,过点F作,交于D,交于E,下列结论正确的是()ABBDF,都是等腰三角形 线 封 密 内 号学级年名姓 线 封 密 外 CBD
3、+CE=DEDADE的周长为2、下列计算中,不正确的有()A(ab2)3ab6B(3xy2)39x3y6C(2x3)24x6D(a2m)3a6m3、下列平面图形中,是轴对称图形的是()ABCD4、如图,在中,边上的高不是()ABCD5、在ABC和ABC中,已知A=A,AB=AB,下面判断中正确的是()A若添加条件AC=AC,则ABCABCB若添加条件BC=BC,则ABCABCC若添加条件B=B,则ABCABCD若添加条件 C=C,则ABCABC第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若点与点关于轴对称,则值是_2、化简1得_.3、如图,为内部一条射线,点为射线上
4、一点,点分别为边上动点,则周长的最小值为_4、计算=_5、当_时,分式的值为0.四、解答题(5小题,每小题8分,共计40分)1、因式分解:(1); (2); (3)2、试说明:对于任意自然数n,2n42n一定能被5整除3、在四边形ABCD中,(1)如图,若,求出的度数;(2)如图,若的角平分线交AB于点E,且,求出的度数; 线 封 密 内 号学级年名姓 线 封 密 外 (3)如图,若和的角平分线交于点E,求出的度数4、如图,在直角坐标系中,的三个顶点坐标分别为,请回答下列问题:(1)作出关于轴的对称图形,并直接写出的顶点坐标;(2)的面积为 5、解方程:-参考答案-一、单选题1、C【解析】【分
5、析】根据直角三角形两锐角互余求出1,再根据两直线平行,内错角相等求出2,然后根据CEF=DEF -2计算出CEF,即可求出AEF【详解】解:A=60,F=45,1=90-60=30,DEF=90-45=45,EDBC,2=1=30,CEF=DEF-2=45-30=15,AEF=180-15=165.故选C.【考点】本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键2、C【解析】【分析】根据三角形外角的定义进行分析即可得到答案.【详解】解:属于ABC外角的有1、3共2个故选C【考点】本题考查三角形外角的定义,解题的关键是掌握三角形的定义.3、D 线 封 密 内 号学
6、级年名姓 线 封 密 外 【解析】【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案【详解】点A(a2,3)和点B(1,b5)关于x轴对称,得a2-1,b5-3解得a1,b8则点C(a,b)在第四象限,故选:D【考点】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a2-1,b5-3是解题关键4、D【解析】【分析】根据轴对称图形的定义判断即可【详解】A,B,C都不是轴对称图形,故不符合题意;D是轴对称图形,故选D.【考点】本题考查了轴对称图形的定义,准确理解定义是解题的关键5、B【解析】【分析】根据题意于点,交于点,则,即【详解】解:,
7、故选B【考点】本题考查垂直的性质,解题关键在于在证明二、多选题1、BCD【解析】【分析】由角平分线定义和平行线的性质得出,得出,同理可得,都是等腰三角形,即可判断A、B;再根据等量代换可以得出,即可判断C;的周长,即可判断D【详解】解:A平分, 线 封 密 内 号学级年名姓 线 封 密 外 ,同理可得,都是等腰三角形;故A选项错误,不符合题意;故B选项正确,符合题意;,故C选项正确,符合题意;的周长,故D选项正确,符合题意;故选:BCD【考点】本题考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义等知识,解题的关键是证出,2、ABCD【解析】【分析】根据积的乘方和幂的乘方运算法则逐一求
8、解判断即可【详解】解:A、,故此选项符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、,故此选项符合题意;故选ABCD【考点】本题主要考查了积的乘方和幂的乘方,解题的关键在于能够熟练掌握相关知识进行求解3、ACD【解析】【分析】根据轴对称图形的定义:一个图形延一条直线对着,直线两旁的部分能够完全重合,那么这个图形叫轴对称图形,逐个判断即可【详解】解:A是轴对称图形,故本选项符合题意;B不是轴对称图形,故本选项不符合题意;C是轴对称图形,故本选项符合题意;D是轴对称图形,故本选项符合题意;故选:ACD【考点】本题考查了轴对称图形的定义,熟悉相关定义是解题的关键4、BCD【解析】【分析
9、】 线 封 密 内 号学级年名姓 线 封 密 外 根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可【详解】解:由图可知,过点A作BC的垂线段即为三角形ABC中BC边的高,则ABC中BC边上的高是AF故BH,CD,EC都不是ABC,BC边上的高,故选BCD【考点】本题主要考查了三角形的高线,是基础题,熟记三角形高的定义是解题的关键5、ACD【解析】【分析】已知两个三角形的一组角和角的一组边相等,可添加已知角的另一组边相等,利用SAS判定三角形全等,也可以添加另外两个角中任意一组角相等,利用AAS或ASA判定三角形全等【详解】解:A选项,添加条件AC=AC,可利用S
10、AS判定则ABCABC,选项正确,符合题意;B选项,添加条件BC=BC,不能判定两个三角形全等,选项不正确;C选项,添加条件B=B,可利用ASA判定ABCABC,选项正确,符合题意;D选项,添加条件C=C,可利用AAS判定ABCABC, 选项正确,符合题意;故选ACD【考点】本题主要考查全等三角形的判定定理,解决本题的关键是要熟练掌握全等三角形的判定定理三、填空题1、1【解析】【分析】直接利用关于y轴对称点的性质得出m,n的值,进而得出答案【详解】解:点A(1+m,1-n)与点B(-3,2)关于y轴对称,1+m=3,1-n=2,解得:m=2,n=-1则(m+n)2021=(2-1)2021=1
11、故答案为:1【考点】此题主要考查了关于y轴对称点的性质,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数2、【解析】【分析】在分式乘除混合计算中,一般情况下是按照从左到右的顺序进行运算,如果有括号,那么应先算括号内的,再算括号外的【详解】1=1=.故答案为:.【考点】此题考查了分式的乘除混合运算,分式乘分式,用分子的积作为积的分子,分母的积作为积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 线 封 密 内 号学级年名姓 线 封 密 外 3、6【解析】【分析】作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2,与OA的交点即为点M,与OB的交点
12、即为点N,则此时M、N符合题意,求出线段P1P2的长即可【详解】解:作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2与OA的交点即为点M,与OB的交点即为点N,PMN的最小周长为PMMNPNP1MMNP2NP1P2,即为线段P1P2的长,连结OP1、OP2,则OP1OP2OP6,又P1OP22AOB60,OP1P2是等边三角形,P1P2OP16,即PMN的周长的最小值是6故答案是:6【考点】本题考查了等边三角形的性质和判定,轴对称最短路线问题的应用,关键是确定M、N的位置4、-2【解析】【分析】原式利用除法法则变形,约分即可得到结果【详解】解:原式=-2,故答案为:-2【考点
13、】本题考查了分式的除法,熟练掌握运算法则是解本题的关键5、且【解析】【分析】根据分式的值为零,分子等于0,分母不等于0即可求解.【详解】由题意得:且解得:且故填:且.【考点】主要考查分式的值为零的条件,注意:分式的值为零,分子等于0,分母不等于0.四、解答题1、(1);(2);(3)【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】(1)直接提取公因式2a,即可得出答案;(2)首先提取公因式(x-y),进而利用平方差公式分解因式得出答案;(3)直接利用平方差公式分解因式,进而利用完全平方公式分解因式得出答案【详解】解:(1)=;(2)=;(3)=【考点】此题主要考查了提取公因式法
14、以及公式法分解因式,熟练应用公式分解因式是解题关键2、详见解析.【解析】【分析】先将2n42n提取公因式再整理变形即可.【详解】解:2n42n2n(241)2n152n35,2n42n一定能被5整除【考点】本题考查的知识点是因式分解的应用,解题的关键是熟练的掌握因式分解的应用.3、 (1)(2)(3)【解析】【分析】(1)利用四边形内角和进行角的计算即可;(2)利用四边形内角和及角平分线的计算得出,再由三角形外角的性质求解即可;(3)利用角平分线得出,结合三角形内角和定理即可得出结果(1)解:四边形的内角和是360, 线 封 密 内 号学级年名姓 线 封 密 外 (2),CE平分(3)BE,C
15、E分别平分和,在中,【考点】题目主要考查四边形内角和及平行线的性质,角平分线的定义,三角形内角和定理等,理解题意,熟练掌握运用这些知识点是解题关键4、(1)图见解析,;(2)【解析】【分析】(1)利用轴对称的性质即可画出,再根据坐标系中所画出的三角形即可写出其顶点坐标(2)如图利用割补法即可求出的面积【详解】(1)如图,即为所求,由图可知,(2)如图取E(1,-2),F(1,-5),G(4,-5),分别连接E、G、F,由图可知四边形EGF为正方形所以,即 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:【考点】本题考查利用轴对称作图,利用轴对称的性质找出对称点的位置是解决问题的关键5、x3【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:方程的两边同乘x1,得:,解这个方程,得:x3,检验,把x3代入x13120,原方程的解是x3【考点】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根