1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,已知 BG 是ABC 的平分线,DEAB 于点 E,DFBC
2、 于点 F,DE=6,则 DF 的长度是( )A2B3C4D62、下列图形为正多边形的是()ABCD3、如图,与交于点,则的度数为()ABCD4、如图,在中,平分,于点的角平分线所在直线与射线相交于点,若,且,则的度数为()ABCD5、如图,已知在四边形中,平分,则四边形的面积是()A24B30C36D42二、多选题(5小题,每小题4分,共计20分)1、若将一副三角板按如图所示的方式放置,则下列结论正确的是()A12B如果230,则有ACDEC如果230,则有BCADD如果230,必有4C 线 封 密 内 号学级年名姓 线 封 密 外 2、下列长度的各种线段,可以组成三角形的是()A2,3,4
3、B1,1,2C5,5,9D7,5,13、下列每组中的两个图形,不是全等图形的是()ABCD4、如图,下列结论正确的是()ABCD5、已知三角形的六个元素如图所示,则甲、乙、丙三个三角形中与全等的是()A甲B乙C丙D不能确定第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在中,平分,DEAC,若,那么_2、在三角形的三条高中,位于三角形外的可能条数是_条3、如图所示的图案是由全等的图形拼成的,其中AD=0.5,BC=1,则AF=_4、如图,点在的边的延长线上,点在边上,连接交于点,若,则_5、如图,的度数为_ 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题
4、(5小题,每小题8分,共计40分)1、在中,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED(1)如图1,当时,则_;(2)当时,如图2,连接AD,判断的形状,并证明;如图3,直线CF与ED交于点F,满足P为直线CF上一动点当的值最大时,用等式表示PE,PD与AB之间的数量关系为_,并证明2、如图,AD是ABC的角平分线,DE、DF分别是ABD和ACD的高(1)求证:AD垂直平分EF;(2)若AB+AC10,SABC15,求DE的长3、用反证法证明:一个三角形中不能有两个角是直角4、如图,ABADBCDC,CDABEBAD90,点E、F分别在边BC、CD上,E
5、AF45,过点A作GABFAD,且点G在CB的延长线上(1)GAB与FAD全等吗?为什么?(2)若DF2,BE3,求EF的长5、(2020锦州模拟)问题情境:已知,在等边ABC中,BAC与ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且MON60,猜想CM、MN、AN三者之间的数量关系方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明; 线 封 密 内 号学级年名姓 线 封 密 外 (2)如图2,M在边
6、AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明-参考答案-一、单选题1、D【解析】【分析】根据角平分线的性质进行求解即可得.【详解】BG 是ABC 的平分线,DEAB,DFBC,DF=DE=6, 故选:D.【考点】本题考查了角平分线的性质,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键2、D【解析】【分析】根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形可得答案【详解】根据正多边形的定义,得到D中图形是正五边形故选D【考点】本题考查了正多边形,关键是掌握正多边形的定义3、A【解析】【分析】先根据三角形
7、的内角和定理可求出,再根据平行线的性质即可得【详解】故选:A【考点】本题考查了三角形的内角和定理、平行线的性质,熟记平行线的性质是解题关键4、C【解析】【分析】由角平分线的定义可以得到,设,假设,通过角的等量代换可得到,代入的值即可【详解】平分,平分,设 线 封 密 内 号学级年名姓 线 封 密 外 可以假设,设,则故答案选:C【考点】本题主要考查了角平分线的定义以及角的等量代换,三角形的内角和定理,外角的性质,二元一次方程组的应用,灵活设立未知数代换角是解题的关键5、B【解析】【分析】过D作DEAB交BA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论【详
8、解】如图,过D作DEAB交BA的延长线于E,BD平分ABC,BCD=90,DE=CD=4,四边形的面积 故选B.【考点】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键二、多选题1、BD【解析】【分析】根据两种三角形的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案【详解】解:CABDAE90,13,故A错误230,1360CAD90+60150, 线 封 密 内 号学级年名姓 线 封 密 外 D+CAD180,ACDE,故B正确,230,1360, ,不平行, 故C错误,230,1360, 由三角形的内角和定理可得: 445,故D正确故
9、选:B,D【考点】此题考查平行线的判断,三角形的内角和定理的应用,解题关键在于根据三角形的内角和来进行计算2、AC【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】解:A、 ,能构成三角形,符合题意;B、1+1=2,不能构成三角形,不符合题意;C、,能构成三角形,符合题意;D、5+17,不能构成三角形,不符合题意故选AC【考点】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键3、ABD【解析】【分析】根据全等形的定义:能够完全重合的两个图形是全等图形,据此可得正确答案【详解】解:A、大小不
10、同,不能重合,不是全等图形,符合题意;B、大小不同,不能重合,不是全等图形,符合题意;C、大小相同,形状相同,是全等图形,不符合题意;D、正五边形和正六边形不是全等图形,符合题意;故选:ABD【考点】本题考查了全等图形的识别,熟知全等图形的定义是解本题的关键4、AD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据三角形的一个外角等于和它不相邻的两个内角的和作答【详解】A、1是ABC的一个外角,123,正确,符合题意;B、1是ABC的一个外角,123,选项错误,不符合题意;C、1是ABC的一个外角,123,又2是CDE的一个外角,245,选项错误,不符合题意;D、2是CDE的
11、一个外角,245,正确,符合题意故选:AD【考点】本题主要考查了三角形的外角性质,解题关键是掌握一个外角等于和它不相邻的两个内角的和5、BC【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可【详解】解:已知ABC中,B50,C58,A72,BCa,ABc,ACb,图甲:只有一条边和AB相等,没有其它条件,不符合三角形全等的判定定理,即和ABC不全等;图乙:只有两个角对应相等,还有一条边对应相等,符合三角形全等的判定定理(AAS),即和ABC全等;图丙:有两边及其夹角,符合三角形全等的判定定理(SAS),能推出两三角形全等;故选:BC【考点】本题考查了全等三角
12、形的判定,解题的关键是注意掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS三、填空题1、30#30度【解析】【分析】由三角形的内角和定理可求解BAC的度数,结合角平分线的定义可得CAD的度数,利用平行线的性质可求解【详解】解:C75,B45,BAC180BC60,AD平分BAC,CADBAC30,DEAC, 线 封 密 内 号学级年名姓 线 封 密 外 ADECAD30故答案为30【考点】本题主要考查三角形的内角和定理,平行线的性质,角平分线的定义,求解CAD的度数2、0或2【解析】【分析】当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内;当三角形为直角三角
13、形和锐角三角形时没有高在三角形外【详解】解:当三角形为直角三角形和锐角三角形时,没有高在三角形外;而当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内在三角形的三条高中,位于三角形外的可能条数是0或2条故答案为0或2【考点】此题主要考查了三角形的高的位置,不同形状的三角形,它的高的情况不同,要求学生必须熟练掌握3、6【解析】【分析】由图形知,所示的图案是由梯形ABCD和七个与它全等的梯形拼接而成,根据全等则重合的性质求解即可【详解】解:由题可知,图中有8个全等的梯形,所以AF=4AD+4BC=40.5+41=6故答案为:6【考点】考查了全等图形的性质,本题利用了全等形图形一定重
14、合的性质求解,做题的关键是找准相互重合的对应边4、102【解析】【分析】首先根据DFC3B117,可以算出B39,然后设CDx,根据外角与内角的关系可得39xx117,再解方程即可得到x39,再根据三角形内角和定理求出BED的度数【详解】解:DFC3B117,B39,设CDx,39xx117,解得:x39,D39,BED1803939102故答案为:102【考点】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和5、【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据多边形的外角和定理即可求解【详解】解:由多边形的外角和定理知,1+2+3+4
15、=360,故答案是:360【考点】本题考查了多边形的外角和定理,理解定理是关键四、解答题1、(1)80;(2)是等边三角形;(3)【解析】【分析】(1)根据垂直平分线性质可知,再结合等腰三角形性质可得,利用平角定义和四边形内角和定理可得,由此求解即可;(2)根据(1)的结论求出即可证明是等边三角形;(3)根据利用对称和三角形两边之差小于第三边,找到当的值最大时的P点位置,再证明对称点与AD两点构成三角形为等边三角形,利用旋转全等模型即可证明,从而可知,再根据30直角三角形性质可知即可得出结论【详解】解:(1)点E为线段AC,CD的垂直平 分线的交点,在中,故答案为:(2)结论:是等边三角形证明
16、:在中,由(1)得:,是等边三角形结论:证明:如解图1,取D点关于直线AF的对称点,连接、;,等号仅P、E、三点在一条直线上成立, 线 封 密 内 号学级年名姓 线 封 密 外 如解图2,P、E、三点在一条直线上,由(1)得:,又,又,点D、点是关于直线AF的对称点,是等边三角形,是等边三角形,在和中, ,(SAS),在中,【考点】本题是三角形综合题,主要考查了等腰三角形、等边三角形的性质和判定,全等三角形性质和判定等知识点,解题关键是利用对称将转化为三角形三边关系找到P的位置,并证明对称点与AD两点构成三角形为等边三角形2、(1)见解析;(2)【解析】【分析】(1)由角平分线的性质得DEDF
17、,再根据HL证明RtAEDRtAFD,得AEAF,从而证明结论;(2)根据DEDF,得,代入计算即可【详解】(1)证明:AD是ABC的角平分线,DE、DF分别是ABD和ACD的高,DEDF,在RtAED与RtAFD中,RtAEDRtAFD(HL), 线 封 密 内 号学级年名姓 线 封 密 外 AEAF,DEDF,AD垂直平分EF;(2)解:DEDF,AB+AC10,DE3【考点】本题考查了全等三角形的判定与性质,角平分线的性质,解题的关键是掌握这些知识点3、见解析【解析】【分析】假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为相矛盾,不成立,由此即可证明【详解】证明
18、:假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为相矛盾,不成立,所以一个三角形中不能有两个直角【考点】本题主要考查了反证法,解题的关键在于能够熟练掌握反证法的步骤4、(1)全等,理由详见解析;(2)5【解析】【分析】(1)由题意易得ABG90D,然后问题可求证;(2)由(1)及题意易得GAEFAE,GBDF,进而问题可求解【详解】解:(1)全等理由如下DABE90,ABG90D,在ABG和ADF中,GABFAD(ASA);(2)BAD90,EAF45,DAF+BAE45,GABFAD,GABFAD,AGAF,GAB+BAE45,GAE45,GAEEAF,在GAE和F
19、AE中, 线 封 密 内 号学级年名姓 线 封 密 外 GAEFAE(SAS)EFGEGABFAD,GBDF,EFGEGB+BEFD+BE2+35【考点】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键5、(1)CMAN+MN,详见解析;(2)CMMNAN,详见解析【解析】【分析】(1)在AC上截取CDAN,连接OD,证明CDOANO,根据全等三角形的性质得到ODON,CODAON,证明DMONMO,得到DMMN,结合图形证明结论;(2)在AC延长线上截取CDAN,连接OD,仿照(1)的方法解答【详解】解:(1)CMAN+MN,理由如下:在AC上截取CDAN,连接
20、OD,ABC为等边三角形,BAC与ACB的角平分线交于点O,OACOCA30,OAOC,在CDO和ANO中,CDOANO(SAS)ODON,CODAON,MON60,COD+AOM60,AOC120,DOM60,在DMO和NMO中,DMONMO,DMMN,CMCD+DMAN+MN;(2)补全图形如图2所示: 线 封 密 内 号学级年名姓 线 封 密 外 CMMNAN,理由如下:在AC延长线上截取CDAN,连接OD,在CDO和ANO中,CDOANO(SAS)ODON,CODAON,DOMNOM,在DMO和NMO中,DMONMO(SAS)MNDM,CMDMCDMNAN【考点】此题主要考查全等三角形的判定与性质,解题的关键是熟知等边三角形的性质及全等三角形的判定定理
Copyright@ 2020-2024 m.ketangku.com网站版权所有