1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中专项测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若一个正多边形的一个外角是60,则这个正多边形的边数是()A10B
2、9C8D62、如图,中,D是外一点, ,则()ABCD3、如图是作的作图痕迹,则此作图的已知条件是()A已知两边及夹角B已知三边C已知两角及夹边D已知两边及一边对角4、若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A1B2C4D85、如图,B=D=90,BC=CD,1=40,则2=( )A40B50C60D75二、多选题(5小题,每小题4分,共计20分)1、以下列数字为长度的各组线段中,能构成三角形的有()A1,2,3B2,3,4C3,4,5D4,5,62、如图,在中,点E在的延长线上,的角平分线与的角平分线相交于点D,连接,下列结论中正确的是() 线 封 密 内 号学级
3、年名姓 线 封 密 外 ABCD3、如图,在中,边上的高不是()ABCD4、下列命题中是假命题的有()A形状相同的两个三角形是全等形;B在两个三角形中,相等的角是对应角,相等的边是对应边;C全等三角形对应边上的高、中线及对应角平分线分别相等D如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;5、如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使ABDACE,添加一个条件可行的是()AAD=AEBBD=CECBE=CDDBAD=CAE第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、将两张三角形纸片如图摆放,量得1+2+3+4=220,则5=_2
4、、已知:如图,是上一点,平分,若,则_(用的代数式表示)3、已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是_(写出一个即可),4、如图,D,E,F分别是的边,上的中点,连接,交于点G,的面积为6,设的面积为,的面积为,则=_5、正多边形的每个内角等于,则这个正多边形的边数为_条四、解答题(5小题,每小题8分,共计40分)1、如图,在中,分别过点B,C向过点A的直线作垂线,垂足分别为点E,F 线 封 密 内 号学级年名姓 线 封 密 外 (1)如图,过点A的直线与斜边BC不相交时,求证:;(2)如图,其他条件不变,过点A的直线与斜边BC相交时,若,试求EF的长2、(2020锦州模拟
5、)问题情境:已知,在等边ABC中,BAC与ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且MON60,猜想CM、MN、AN三者之间的数量关系方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明;(2)如图2,M在边AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明3、如图,点A,F,E,D在一条直线上,AFDE,CFBE,ABCD求证BECF
6、4、在中,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED(1)如图1,当时,则_;(2)当时,如图2,连接AD,判断的形状,并证明;如图3,直线CF与ED交于点F,满足P为直线CF上一动点当的值最大时,用等式表示PE,PD与AB之间的数量关系为_,并证明5、已知:如图,ABC是任意一个三角形,求证:A+B+C=180-参考答案- 线 封 密 内 号学级年名姓 线 封 密 外 一、单选题1、D【解析】【分析】根据多边形的外角和等于360计算即可【详解】解:360606,即正多边形的边数是6故选:D【考点】本题考查了多边形的外角和定理,掌握多边形的外角和等于36
7、0,正多边形的每个外角都相等是解题的关键2、D【解析】【分析】设,则,由,即可求出【详解】设,则,故选:D【考点】本题考查了三角形内角和定理的应用,解题关键是灵活运用相关知识进行求解3、C【解析】【分析】观察的作图痕迹,可得此作图的条件.【详解】解:观察的作图痕迹,可得此作图的已知条件为:,及线段AB,故已知条件为:两角及夹边,故选C.【考点】本题主要考查三角形作图及三角形全等的相关知识.4、C【解析】【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,求出a的取值范围即可得解【详解】根据三角形的三边关系得,即,则选项中4符合题意,故选:C【考点】本题主要考查了三角形
8、的三边关系,熟练掌握相关不等关系是解决本题的关键 线 封 密 内 号学级年名姓 线 封 密 外 5、B【解析】【分析】根据题意易证,则可由2=ACB=90-1,求得2的值【详解】B=D=90,在RtABC和RtADC中,ABCADC (HL),故选B【考点】本题考查三角形全等的判定和性质判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件二、多选题1、BCD【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项判断即可【详解】解:A不能组成三角形,该项不符合题意; B,该项符合题意;C,该项符合题意;
9、D,该项符合题意;故选:BCD【考点】本题考查三角形的成立条件,掌握三角形的三边关系是解题的关键2、ACD【解析】【分析】根据三角形的内角和定理列式计算即可求出BAC=70,再根据角平分线的定义求出DBC,然后利用三角形的外角性质求出DOC,再根据邻补角可得ACE=120,由角平分线的定义求出ACD=60,再利用三角形的内角和定理列式计算即可BDC,根据BD平分ABC和CD平分ACE,可得AD平分BAC的邻补角,由邻补角和角平分线的定义可得DAC.【详解】解:ABC=50,ACB=60, BAC=180-ABC-ACB=180-50-60=70, 故A选项正确, BD平分ABC, DBC=AB
10、C=50=25, DOC是OBC的外角, DOC =OBC+ACB=25+60=85, 故B选项不正确; ACB=60, ACE=180-60= 120, CD平分ACE, ACD=ACE=60, BDC=180-85-60=35,故C选项正确; 线 封 密 内 号学级年名姓 线 封 密 外 BD平分ABC,点D到直线BA和BC的距离相等,CD平分ACE点D到直线BC和AC的距离相等,点D到直线BA和AC的距离相等,AD平分BAC的邻补角,DAC=(180-70)=55, 故D选项正确 故选ACD【考点】本题主要考查了角平分线的定义,性质和判定,三角形的内角和定理和三角形的外角性质,解决本题的
11、关键是要熟练掌握角平分线的定义,性质和判定.3、BCD【解析】【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可【详解】解:由图可知,过点A作BC的垂线段即为三角形ABC中BC边的高,则ABC中BC边上的高是AF故BH,CD,EC都不是ABC,BC边上的高,故选BCD【考点】本题主要考查了三角形的高线,是基础题,熟记三角形高的定义是解题的关键4、ABD【解析】【分析】利用全等形的定义、对应角及对应边的定义,全等三角形的性质分别判断后即可确定正确的选项【详解】解:A、形状相同的两个三角形不一定是全等形,原命题是假命题,符合题意;B、在两个全等三角形中,相等的
12、角是对应角,相等的边是对应边,原命题是假命题,符合题意;C、全等三角形对应边上的高、中线及对应角平分线分别相等,正确;原命题是真命题;D、如果两个三角形都和第三个三角形不全等,那么这两个三角形也可能全等,原命题是假命题,符合题意故选:ABD【考点】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理5、ABCD【解析】【分析】根据全等三角形的判定定理SAS,ASA,AAS,SSS,对每一个选项进行判断即可【详解】解:在ABC中,ABA
13、C,BC,当ADAE时,ADEAED, 线 封 密 内 号学级年名姓 线 封 密 外 ADEBBAD,AEDCCAE,BADCAE,然后根据SAS或ASA或AAS可判定ABDACE;当BDCE时,根据SAS可判定ABDACE;当BECD时,BEDECDDE,即BDCE,根据SAS可判定ABDACE;当BADCAE时,根据ASA可判定ABDACE综上所述ABCD均可判定ABDACE故选:ABCD【考点】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中三、填空题1、40【解析】【分析】直接利用三角形内角和定理得出6+7的度数,进而得
14、出答案【详解】如图所示:1+2+6=180,3+4+7=180,1+2+3+4=220,1+2+6+3+4+7=360,6+7=140,5=180-(6+7)=40故答案为40【考点】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键2、【解析】【分析】过点D分别作DEAB,DFAC,根据角平分线的性质得到DE=DF,根据表示出DE的长度,进而得到DF的长度,然后即可求出的值【详解】如图,过点D分别作DEAB,DFAC, 线 封 密 内 号学级年名姓 线 封 密 外 平分,DE=DF,故答案为:【考点】此题考查了角平分线的性质定理,三角形面积的表示方法,解题的关键是根据题意正确作出
15、辅助线3、4(答案不唯一,在3x9之内皆可)【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围,即可得出结果【详解】解:根据三角形的三边关系,得:第三边应大于6-3=3,而小于6+3=9,故第三边的长度3x9故答案为:4(答案不唯一,在3x9之内皆可)【考点】此题主要考查了三角形的三边关系,根据三角形三边关系定理列出不等式,然后解不等式,确定取值范围即可4、【解析】【分析】根据同高三角形的面积比就是相应底的比进行推导即可求得答案【详解】解:是的中点,、分别是、的中点,设的面积为,的面积为 线 封 密 内 号学级年名姓 线 封 密 外 故答
16、案是:【考点】本题考查了与三角形中线有关的三角形面积问题,涉及到了三角形中线的性质、三角形的面积公式、同高三角形面积之比等于相应底的比等,难度不大5、12【解析】【详解】多边形内角和为180(n-2),则每个内角为180(n-2)n,n=12,所以应填12.四、解答题1、(1)见详解;见详解;(2)7【解析】【分析】(1)由条件可求得EBAFAC,利用AAS可证明ABECAF;利用全等三角形的性质可得EAFC,EBFA,利用线段的和差可证得结论;(2)同(1)可证明ABECAF,可证得EFFAEA,代入可求得EF的长【详解】(1)证明:BEEF,CFEF,AEBCFA90,EABEBA90,B
17、AC90,EABFAC90,EBAFAC,在AEB与CFA中,ABECAF(AAS),ABECAF,EAFC,EBFA,EFAFAEBECF;(2)解:BEAF,CFAFAEBCFA90EABEBA90BAC90EABFAC90EBAFAC,在AEB与CFA中,ABECAF(AAS),EAFC,EBFA,EFFAEAEBFC1037【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键2、(1)CMAN+MN,详见解析;(
18、2)CMMNAN,详见解析【解析】【分析】(1)在AC上截取CDAN,连接OD,证明CDOANO,根据全等三角形的性质得到ODON,CODAON,证明DMONMO,得到DMMN,结合图形证明结论;(2)在AC延长线上截取CDAN,连接OD,仿照(1)的方法解答【详解】解:(1)CMAN+MN,理由如下:在AC上截取CDAN,连接OD,ABC为等边三角形,BAC与ACB的角平分线交于点O,OACOCA30,OAOC,在CDO和ANO中,CDOANO(SAS)ODON,CODAON,MON60,COD+AOM60,AOC120,DOM60,在DMO和NMO中,DMONMO,DMMN,CMCD+DM
19、AN+MN;(2)补全图形如图2所示:CMMNAN,理由如下:在AC延长线上截取CDAN,连接OD,在CDO和ANO中, 线 封 密 内 号学级年名姓 线 封 密 外 ,CDOANO(SAS)ODON,CODAON,DOMNOM,在DMO和NMO中,DMONMO(SAS)MNDM,CMDMCDMNAN【考点】此题主要考查全等三角形的判定与性质,解题的关键是熟知等边三角形的性质及全等三角形的判定定理3、证明见解析【解析】【分析】根据线段的和差关系可得AEDF,根据平行线的性质可得DA,CFDBEA,利用ASA可证明ABEDCF,根据全等三角形的性质即可得结论【详解】AFDE,AFEFDEEF,即
20、AEDF,AB/CD,DA,CF/BE,CFDBEA,在ABEDCF中,ABEDCF,BECF【考点】本题考查平行线的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键4、(1)80;(2)是等边三角形;(3)【解析】【分析】(1)根据垂直平分线性质可知,再结合等腰三角形性质可得,利用平角定义和四边形内角和定理可得,由此求解即可;(2)根据(1)的结论求出即可证明是等边三角形;(3)根据利用对称和三角形两边之差小于第三边,找到当的值最大时的P点位置,再证明对称点与AD两点构成三角形为等边三角形,利用旋转全等模型即可证明,从而可知,再根据30直角三角形性质可知即可得出结论【详解】
21、解:(1)点E为线段AC,CD的垂直平 分线的交点, 线 封 密 内 号学级年名姓 线 封 密 外 ,在中,故答案为:(2)结论:是等边三角形证明:在中,由(1)得:,是等边三角形结论:证明:如解图1,取D点关于直线AF的对称点,连接、;,等号仅P、E、三点在一条直线上成立,如解图2,P、E、三点在一条直线上,由(1)得:,又,又,点D、点是关于直线AF的对称点,是等边三角形,是等边三角形,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 ,(SAS),在中,【考点】本题是三角形综合题,主要考查了等腰三角形、等边三角形的性质和判定,全等三角形性质和判定等知识点,解题关键是利用对称将转化为三角形三边关系找到P的位置,并证明对称点与AD两点构成三角形为等边三角形5、证明见解析【解析】【分析】过点A作EFBC,利用EFBC,可得1=B,2=C,而1+2+BAC=180,利用等量代换可证BAC+B+C=180【详解】解:如图,过点A作EFBC,EFBC,1=B,2=C,1+2+BAC=180,BAC+B+C=180,即A+B+C=180【考点】本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有