收藏 分享(赏)

2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx

上传人:a**** 文档编号:637543 上传时间:2025-12-12 格式:DOCX 页数:25 大小:560.93KB
下载 相关 举报
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第1页
第1页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第2页
第2页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第3页
第3页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第4页
第4页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第5页
第5页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第6页
第6页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第7页
第7页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第8页
第8页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第9页
第9页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第10页
第10页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第11页
第11页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第12页
第12页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第13页
第13页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第14页
第14页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第15页
第15页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第16页
第16页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第17页
第17页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第18页
第18页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第19页
第19页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第20页
第20页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第21页
第21页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第22页
第22页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第23页
第23页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第24页
第24页 / 共25页
2022-2023学年北师大版八年级数学上册第一章勾股定理专题测评练习题.docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、北师大版八年级数学上册第一章勾股定理专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,有一块直角三角形纸片,C90,AC8,BC6,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕

2、为AD,则BD的长为()A2BCD42、如图,将直角三角形纸片沿AD折叠,使点B落在AC延长线上的点E处若AC3,BC=4,则图中阴影部分的面积是()ABCD3、如图,三角形纸片ABC,AB=AC,BAC=90,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是()AB3C3D34、以下列各组数的长为边作三角形,不能构成直角三角形的是()A3,4,5B4,5,6C6,8,10D9,12,155、如图,在RtACB和RtDCE中,ACBC2,CDCE,CBD15,连接AE,BD交于点F,则BF的长为()ABCD6、如图,在RtABC中,ACB=90,C

3、DAB,垂足为D,AF平分CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为()ABCD7、两只小鼹鼠在地下打洞,一只朝正北方向挖,每分钟挖8cm,另一只朝正东方向挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A50cmB120cmC140cmD100cm8、如图,把长方形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若FPH90,PF8,PH6,则长方形ABCD的边BC的长为( ) A20B22C24D309、在ABC中,A,B,C的对边分别记为a,b,c,下列结论中不正确的是()A如果a2=b2c2,那么ABC是直角三角形且A=90B如果A:B

4、:C=1:2:3,那么ABC是直角三角形C如果,那么ABC是直角三角形D如果,那么ABC是直角三角形10、如图,在RtABC中,ACB90, AB5,AC3,点D是BC上一动点,连接AD,将ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当DEB是直角时,DF的长为()A5B3CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O若AD=3,BC=5,则_2、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A、

5、B、C的面积分别是,则正方形D的面积是_3、如图,在四边形ABCD中,那么四边形ABCD的面积是_4、如图,在高2米,坡角为30的楼梯表面铺地毯,地毯的长至少需_米5、如图,折叠直角三角形纸片ABC,使得两个锐角顶点A、C重合,设折痕为DE,若AB=4,BC=3,则ADC的周长是_三、解答题(5小题,每小题10分,共计50分)1、如图,点是内一点,把绕点顺时针旋转得到,且,.(1)判断的形状,并说明理由;(2)求的度数.2、细心观察图形,认真分析各式,然后解答问题OA22=,;OA32=12+,;OA42=12+,(1)请用含有n(n是正整数)的等式表示上述变规律:OAn2=_;Sn=_(2)

6、求出OA10的长(3)若一个三角形的面积是,计算说明他是第几个三角形?(4)求出S12+S22+S32+S102的值3、如图,中,是边上一点,且,若求的长4、已知a,b,c为ABC的三边,且满足a2c2b2c2a4b4,试判定ABC的形状5、如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,于A,于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求E应建在距A多远处?-参考答案-一、单选题1、B【解析】【分析】根据勾股定理求出AB的长,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD【详解】解:C90,AC8,BC6,由翻折得AE=A

7、B=10,DE=BD,CE=AE-AC=10-8=2,在RtCED中,解得BD=,故选:B【考点】此题考查了勾股定理的应用,翻折的性质,熟记勾股定理的计算公式是解题的关键2、B【解析】【分析】由勾股定理求出AB,设CD=x,则BD=4-x,根据求出x得到CD的长,利用面积求出答案【详解】解:ACB=90,由折叠得AE=AB=5,DE=BD,设CD=x,则BD=4-x,在DCE中,DCE=90,CE=AE-AC=5-3=2,解得x=1.5,CD=1.5,图中阴影部分的面积是,故选:B【考点】此题考查了折叠的性质,勾股定理,熟记勾股定理的计算公式是解题的关键3、B【解析】【分析】折叠的性质主要有:

8、1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知,所以可求出AFB=90,再直角三角形的性质可知,所以,的长可求,再利用勾股定理即可求出BC的长【详解】解: ABAC,,故选B.【考点】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出AFB=90是解题的关键4、B【解析】【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可【详解】解:A、32+42=52,故是直角三角形,不符合题意;B、42+5262,故不是直角三角形,符合题意;C、62+82=102,故是直角三角形,不符合题意;D、92+122=152,故是直角三

9、角形,不符合题意;故选:B【考点】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形5、B【解析】【分析】由已知证得,进而确定三个内角的大小,求得,进而可得到答案【详解】解: 又 在等腰直角三角形中 故选:B【考点】本题考查全等三角形的判定和性质,勾股定理;熟练掌握相关知识是解题的关键6、A【解析】【分析】根据三角形的内角和定理得出CAF+CFA=90,FAD+AED=90,根据角平分线和对顶角相等得出CEF=CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案【详解】过点F作FGAB于点G,ACB=90,CDAB

10、,CDA=90,CAF+CFA=90,FAD+AED=90,AF平分CAB,CAF=FAD,CFA=AED=CEF,CE=CF,AF平分CAB,ACF=AGF=90,FC=FG,B=B,FGB=ACB=90,BFGBAC,AC=3,AB=5,ACB=90,BC=4,FC=FG,解得:FC=,即CE的长为故选A【考点】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出CEF=CFE7、D【解析】【分析】画出图形,利用勾股定理即可求解【详解】解:如图,cm,cm,在中,cm,故选:D【考点】本题考查了勾股定理的应用,理解题意,画出图形是

11、解题的关键8、C【解析】【详解】由折叠得: 在Rt 中,FPH90,PF8,PH6,则 故BC=BF+FH+HC=6+8+10=24.故选C.9、A【解析】【分析】根据直角三角形的判定和勾股定理的逆定理解答即可【详解】解:A、如果a2=b2-c2,即b2=a2+c2,那么ABC是直角三角形且B=90,选项错误,符合题意;B、如果A:B:C=1:2:3,由A+B+C=180,可得A=90,那么ABC是直角三角形,选项正确,不符合题意;C、如果a2:b2:c2=9:16:25,满足a2+b2=c2,那么ABC是直角三角形,选项正确,不符合题意;D、如果A-B=C,由A+B+C=180,可得A=90

12、,那么ABC是直角三角形,选项正确,不符合题意;故选:A【考点】本题考查的是直角三角形的判定和勾股定理的逆定理的应用,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形10、C【解析】【分析】如图,由题意知,可知三点共线,与重合,在中,由勾股定理得,求的值,设,在中,由勾股定理得,计算求解即可【详解】解:如图,是直角由题意知,三点共线与重合在中,由勾股定理得设,在中,由勾股定理得即解得的长为故选C【考点】本题考查了折叠的性质,勾股定理等知识解题的关键在于明确三点共线,与重合二、填空题1、34【解析】【分析】在RtCOB和RtAOB中,根据勾股定理得BO2+CO2=C

13、B2,OD2+OA2=AD2,进一步得BO2+CO2+OD2+OA2=9+25,再根据AB2=BO2+AO2,CD2=OC2+OD2,最后求得AB2+CD2=34【详解】解:BDAC,COB=AOB=AOD=COD=90,在RtCOB和RtAOB中,根据勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,BO2+CO2+OD2+OA2=9+25,AB2=BO2+AO2,CD2=OC2+OD2,AB2+CD2=34;故答案为:34【考点】本题考查勾股定理的应用,熟练掌握勾股定理在实际问题中的应用,从题中抽象出勾股定理这一数学模型是解题关键2、15【解析】【分析】根据勾股定理有S正方形1+

14、S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代换即可求正方形D的面积【详解】解:如图,根据勾股定理可知, S正方形1+S正方形2=S大正方形=49, S正方形C+S正方形D=S正方形2, S正方形A+S正方形B=S正方形1, S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49 正方形D的面积=49-8-12-14=15(cm2); 故答案为:15【考点】此题主要考查了勾股定理,注意根据正方形的面积公式以及勾股定理得到图中正方形的面积之间的关系:以直角三角形的两条直角边为边长的两个正方形的面积和等于以斜边为边长的面积3、

15、+24【解析】【分析】连结BD,可求出BD=6,再根据勾股定理逆定理,得出BDC是直角三角形,两个三角形面积相加即可【详解】解:连结BD,BD=6,BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,BDC=90,SABD=,SBDC=,四边形ABCD的面积是= SABD+ SBDC=+24故答案为:+24【考点】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型4、2+2【解析】【分析】地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC)【详解】在RtABC中,A=30,BC=2m,

16、C=90,AB=2BC=4m,AC=m,AC+BC=2+2(m).故答案为2+2.【考点】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.5、【解析】【分析】首先根据勾股定理设,求出AD、CD,再求出AB,相加即可【详解】解:折叠直角三角形纸片,使两个锐角顶点、重合,设,则,故,即,解得,则在中,由勾股定理得AC=5周长为AD+CD+AB= 故答案为:【考点】本题考查了勾股定理的应用以及折叠的性质,掌握勾股定理和折叠的性质是解题的关键三、解答题1、(1)是直角三角形,理由见解析;(2)150.【解析】【分析】(1)求出DE,CE,CD长,根据勾股逆定理

17、可知的形状;(2)由等边三角形角的性质和全等三角形角的性质可知的度数【详解】解:(1)是直角三角形理由如下:绕点顺时针旋转得到,是等边三角形,又,是直角三角形.(2)由(1)得,是等边三角形,.【考点】本题是三角形综合题,主要考查了全等三角形的证明和性质、等边三角形的性质和判定、勾股逆定理,熟练应用等边三角形的性质求线段长及角度是解题的关键.2、(1)OAn2n;Sn;(2)OA10;(3)说明他是第20个三角形;(4)【解析】【分析】(1)利用已知可得OAn2,注意观察数据的变化,(2)结合(1)中规律即可求出OA102的值即可求出,(3)若一个三角形的面积是,利用前面公式可以得到它是第几个

18、三角形,(4)根据题意列出式子即可求出【详解】(1)结合已知数据,可得:OAn2n;Sn;(2)OAn2n,OA10;(3)若一个三角形的面积是,根据:Sn,2,说明他是第20个三角形,(4)S12+S22+S32+S102,故答案为(1)OAn2n;Sn;(2)OA10;(3)说明他是第20个三角形;(4)【考点】本题考查规律型:图形的变化类,勾股定理的应用.3、AC2=CE2+AE2=102+24AC=26,265=5.2(s)答:它至少需要5.2s才能赶回巢中【考点】本题考查了勾股定理的应用关键是构造直角三角形,同时注意:时间=路程速度22【解析】【分析】过点作于点,则,结合可得出,进而

19、可得出,在中,利用勾股定理可求出的长,即,结合可求出的长【详解】解:过点作于点,如图所示,在中,即,又,【考点】本题考查了勾股定理、等腰三角形的性质以及三角形内角和定理,在中,利用勾股定理求出的长是解题的关键4、ABC为直角三角形或等腰三角形【解析】【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断ABC的形状【详解】解:a2c2b2c2=a4b4,a4b4a2c2+b2c2=0,(a4b4)(a2c2b2c2)=0,(a2+b2)(a2b2)c2(a2b2)=0,(a2+b2c2)(a2b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即ABC为直角三角形或等腰三角形5、E应建在距A点15km处【解析】【分析】设,则,根据勾股定理求得和,再根据列式计算即可;【详解】设,则,由勾股定理得:在中,在中,由题意可知:,所以:,解得:所以,E应建在距A点15km处【考点】本题主要考查了勾股定理的实际应用,准确计算是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1