ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:1.06MB ,
资源ID:63718      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-63718-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(四川省乐山市沫若中学2020-2021学年高二数学下学期入学考试试题 理.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

四川省乐山市沫若中学2020-2021学年高二数学下学期入学考试试题 理.doc

1、四川省乐山市沫若中学2020-2021学年高二数学下学期入学考试试题 理满分:150分 考试时间:120分钟 一、选择题:(共12个小题,每题5分,共60分。)1点A(3,2,1)关于xOy平面的对称点为()A(-3,-2,-1) B(-3,2,1) C(3,-2,1) D(3,2,-1)2抛物线的准线方程为A. B. C. D. 3设a,b是两条直线,是两个平面,且,则“”是“”的( )A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件4体积为的正方体的顶点都在同一个球面上,则该球的表面积为( )ABCD5过抛物线的焦点作直线交抛物线于,两点,如果,那么A. 6B. 8C

2、. 9D. 106已知双曲线的一条渐近线方程为,则此双曲线的离心率为A. B. C. D. 7在底面为正方形的四棱锥中,底面,则异面直线与所成的角为( )A B C D8若直线与圆的两个交点关于直线对称,则的值分别为( )A B C D9已知,为椭圆的左、右焦点,点在上,则等于A. B. C. D. 10已知P是ABC所在平面外一点,点P与AB,AC,BC的距离相等,且点P在ABC上的射影O在ABC内,则O一定是ABC的()A内心 B外心 C重心 D中心11已知,是双曲线的左、右焦点,过的直线l与双曲线的左、右两支分别交于点A,B,若为等边三角形,则该双曲线的渐近线的斜率为( )ABCD12如

3、图,正方体中,P为底面上的动点,于E,且则点P的轨迹是( )A线段 B圆 C椭圆的一部分 D抛物线的一部分二、填空题:(共4个小题,每题5分,共20分。)13命题“”的否定是_.14若抛物线上的点到焦点的距离为10,则到轴的距离是15设、分别是椭圆的左、右焦点若是该椭圆上的一个动点,则的最大值为 16已知双曲线右支上一点分别为其左右焦点,圆是内切圆,且与圆相切于点(为半焦距),若,则双曲线离心率的取值范围是_三、解答题:(共6个小题,共70分。)17(满分10分)如图所示,直棱柱中,四边形ABCD为菱形,点E是线段的中点(1)求证:平面BDE;(2)求证:18(满分12分)已知圆,圆心在直线上

4、(1)求圆的标准方程;(2)求直线被圆截得的弦的长19(满分12分)如图,一简单组合体的一个面内接于圆O,是圆O的直径,矩形所在的平面垂直于圆O所在的平面.(1)证明:平面平面;(2)若,试求该简单组合体的体积.20 (满分12分)已知过抛物线的焦点,斜率为的直线交抛物线于,两点,且.()求该抛物线的方程()为坐标原点,为抛物线上一点,若,求的值 21(满分12分)如图,在三棱锥中,平面平面,是的中点()求证:平面;()设点是的中点,求二面角的余弦值22(满分12分)已知椭圆的长轴长为4,焦距为,点为椭圆上一动点,且直线的斜率之积为(1)求椭圆的标准方程;(2)设分别是椭圆的左右顶点,若点是上

5、不同于的两点,且满,求证:的面积为定值数学试题(理科)答案一、选择题(共12个小题,每题5分,共60分。)1 D 2C 3C 4B 5B 6、A 7 8、B 9D 10A 11C .12A二、填空题(共4个小题,每题5分,共20分。)13 149 154 16.三、解答题:(共6个小题,共70分。)17【答案】(1)证明见解析;(2)证明见解析.【分析】(1)连接AC交BD于点O,连接OE,即可得到,从而得证;(2)依题意可得,再由,即可得到平面,从而得证;【详解】(1)证明:如图,连接AC交BD于点O,连接OE;因为,E分别为线段AC,的中点,故,而平面BDE,平面BDE,故平面(2)证明:

6、因为直棱柱,故平面ABCD,又平面ABCD,所以因为ABCD是菱形,所以又,平面,平面,所以平面因为平面,故18【答案】(1);(2)【分析】(1)由圆的一般式方程求出圆心代入直线即可求出得值,即可求解;(2)先计算圆心到直线的距离,利用即可求弦长.【详解】(1)由圆,可得所以圆心为,半径 又圆心在直线上,即,解得所以圆的一般方程为,故圆的标准方程为(2)由(1)知,圆心,半径圆心到直线的距离则直线被圆截得的弦的长为所以,直线被圆截得的弦的长为19【答案】(1)证明见解析;(2).【分析】(1)由题意可得,由线面垂直的判定定理可得面,再由,可得面,根据面面垂直的判定定理即可证明.(2)根据面面

7、垂直的性质定理可得,且面,根据锥体的体积公式即可求解.【详解】解 (1)证明:因为内接于圆O且为直径所以在矩形中有且与相交于点C所以面而所以面因此面面(2)解:由题知,面面且面面所以面所以.又因为,所以同理面,在中,所以矩形的面积为因此该简单组合体的体积20【答案】();()或2【解析】()抛物线的焦点为,则直线的方程为,代入抛物线的方程,可得,可得,由抛物线的定义可得,由已知,得,解得,即抛物线的方程为;()由可得,可得或,即有,设,即有,由,可得,即,解得或221【答案】()证明见解析;()【分析】()根据面面垂直的性质定理可得平面,根据线面垂直的性质定理,可得,根据等腰三角形中线的性质,

8、可得,利用线面垂直的判定定理,即可得证;()根据面面垂直的性质定理可得平面,结合题意,如图建系,可得各点坐标,进而可得,的坐标,即可求得两个平面的法向量,利用二面角的向量求法,即可求得答案.【详解】解:()平面平面,平面平面=AC,平面,平面,平面,是的中点,平面,平面 ()平面平面,平面平面=AC,平面,平面,平面,以C为原点,CA,CB,CP为x,y,z轴正方向,建立如图所示的空间直角坐标系,则,由()知是平面的一个法向量,设是平面的法向量,则有,即,令,则,设二面角所成角为,由图可得为锐角,则22【答案】(1);(2)定值为,证明见解析【分析】(1)根据题意可得,再由即可求解. (2)设,且直线的方程为:,由题意可得,联立直线和椭圆方程,利用韦达定理可得,再由,化简整理即可求解.【详解】(1)由题意可得 解得,椭圆的标准方程为(2)证明:设,直线的方程为: 由得即,联立直线和椭圆方程:,整理得:由韦达定理可得:又代入,可得,的面积,的面积为定值【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是求出直线的方程中,考查了计算能力.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3