1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中专项测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC点
2、BD点A2、如图,则A45B55C35D653、如图,已知图中的两个三角形全等,则的度数是()A72B60C58D504、如图,在中,连接BC,CD,则的度数是()A45B50C55D805、如图,在中,平分,于点的角平分线所在直线与射线相交于点,若,且,则的度数为()ABCD二、多选题(5小题,每小题4分,共计20分)1、在四边形ABCD中,ADBC,若DAB的平分线AE交CD于E,连接BE,且BE也平分ABC,则以下的命题中正确的是( )ABC+AD=ABB为CD中点 线 封 密 内 号学级年名姓 线 封 密 外 CAEB=90DSABE=S四边形ABCD2、如图,若判断,则需要添加的条件
3、是()A,B,C,D,3、如图,O是直线上一点,A,B分别是,平分线上的点,于点E,于点C,于点D,则下列结论中,正确的是()ABC与互余的角有两个DO是的中点4、如图,为了估计池塘两岸,间的距离,在池塘的一侧选取点,测得米,米,那么,间的距离可能是()A5米B8.7米C27米D18米5、如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得米,米,A,B间的距离可能是()A12米B10米C15米D8米第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如果一个多边形的内角和为1260,那么从这个多边形的一个顶点可以连_条对角线2、如图,ABCD,DCE=
4、118,AEC的角平分线EF与GF相交于点F,BGF=132,则F的度数是_3、如图,BE交AC于点M,交CF于点D,AB交CF于点N,给出的下列五个结论中正确结论的序号为 线 封 密 内 号学级年名姓 线 封 密 外 ;4、如图,在ABC中,点D是AC的中点,分别以AB,BC为直角边向ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中ABMNBC90,连接MN,已知MN4,则BD_5、如图,已知在ABD和ABC中,DABCAB,点A、B、E在同一条直线上,若使ABDABC,则还需添加的一个条件是_(只填一个即可)四、解答题(5小题,每小题8分,共计40分)1、如图A20,B45,C4
5、0,求DFE的度数2、如图,已知ABC中,AB=AC,A=108,BD平分ABC求证:BC=AB+CD 3、在中,为直线上一点,连接,过点作交于点,交于点,在直线上截取,连接(1)当点,都在线段上时,如图,求证:;(2)当点在线段的延长线上,点在线段的延长线上时,如图;当点在线段的延长线上,点在线段的延长线上时,如图,直接写出线段,之间的数量关系,不需要证明4、如图,在图(1)中,猜想:_度请说明你猜想的理由如果把图1成为2环三角形,它的内角和为;图2称为2环四边形,它的内角和为则2环四边形的内角和为_度;2环五 线 封 密 内 号学级年名姓 线 封 密 外 边形的内角和为_度;2环n边形的内
6、角和为_度5、如图,点A,F,E,D在一条直线上,AFDE,CFBE,ABCD求证BECF-参考答案-一、单选题1、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型2、B【解析】【分析】求出BE=CF,根据SSS证出AEBDFC,推出C=B,根据全等三角形的判定推出即可【详解】解答:证明:,BE=CF,在AEB和DFC中,AEBDFC(SSS),C=B=55.【考点】本题考查了全等三角形的性质和判定,解此题的关键是推出AEBDFC,注意:全等三角形的对应边相等,对应角相
7、等3、D【解析】【分析】根据是a、c边的夹角,50的角是a、c边的夹角,然后根据两个三角形全等写出即可【详解】解:是a、c边的夹角,50的角是a、c边的夹角, 线 封 密 内 号学级年名姓 线 封 密 外 又两个三角形全等,的度数是50故选:D【考点】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键全等三角形的对应角相等,对应边相等对应边的对角是对应角,对应角的对边是对应边4、B【解析】【分析】连接AC并延长交EF于点M由平行线的性质得,再由等量代换得,先求出即可求出【详解】解:连接AC并延长交EF于点M,故选B【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于
8、基础题型5、C【解析】【分析】由角平分线的定义可以得到,设,假设,通过角的等量代换可得到,代入的值即可【详解】平分,平分,设可以假设,设,则 线 封 密 内 号学级年名姓 线 封 密 外 故答案选:C【考点】本题主要考查了角平分线的定义以及角的等量代换,三角形的内角和定理,外角的性质,二元一次方程组的应用,灵活设立未知数代换角是解题的关键二、多选题1、ABCD【解析】【分析】在AB上截取AF=AD证明AEDAEF,BECBEF可证4个结论都正确【详解】解:在AB上截取AF=AD则AEDAEF(SAS)AFE=DADBC,D+C=180C=BFEBECBEF(AAS)BC=BF,故AB=BC+A
9、D;CE=EF=ED,即E是CD中点;AEB=AEF+BEF=DEF+CEF=180=90;SAEF=SAED,SBEF=SBEC,SAEB=S四边形BCEF+S四边形EFAD=S四边形ABCD故选ABCD【考点】此题考查全等三角形的判定与性质,运用了截取法构造全等三角形解决问题,难度中等2、BC【解析】【分析】已知公共角A,根据三角形全等的判定方法对选项依次判定即可;【详解】解:A.判定两个三角形全等时,必须有边的参与,故本选项错误;B. 根据SAS判定ACDABE,故本选项正确;C. 根据AAS判定ACDABE,故本选项正确;D. 不能判定ACDABE,故本选项错误;故选:B、C【考点】本
10、题考查三角形全等的判定方法,熟练掌握三角形全等的常用判定方法是解答本题的关键.3、ABD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据角平分线的性质得,等量代换得出,故A选项正确;根据角平分线性质得 ,又因为 即可得,故B选项正确;根据互余的定义和性质可得与 互余的角有4个,故C选项错误;因为OC=OE=OD,所以点O是CD 的中点,故D选项正确;即可得出结果【详解】解:A,B分别是,的角平分线上的点,故A选项说法正确,符合题意;A,B分别是,的角平分线上的点, 又,故B选项说法正确,符合题意;,与互余,与互余,与互余,与互余,综上,与互余的角有4个,故C选项说法错误,不
11、符合题意;OC=OE=OD,点O是CD 的中点,故D选项说法正确,符合题意;故选ABD【考点】本题考查了角平分线的性质,邻补角,余角的性质,线段的中点,解题的关键是掌握角平分线的性质,邻补角,余角的性质,线段的中点4、ABD【解析】【分析】连接AB,根据三角形的三边关系定理得出不等式,即可得出选项【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:连接AB,PA=15米,PB=11米,由三角形三边关系定理得:1511AB15+11,4AB26,那么,间的距离可能是5米、8.7米、18米;故选:ABD【考点】本题考查了三角形的三边关系定理,能根据三角形的三边关系定理得出不等式是解此题的关
12、键5、ABD【解析】【分析】根据三角形的三边之间的关系逐一判断即可得到答案.【详解】解:中, 符合题意,不符合题意;故选:【考点】本题考查的是三角形的三边关系的应用,掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.三、填空题1、6【解析】【分析】首先根据多边形内角和公式可得多边形的边数,再计算出对角线的条数【详解】解:设此多边形的边数为n,由题意得:(n-2)180=1260,解得;n=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=6,故答案为:6【考点】此题主要考查了多边形的内角和计算公式求多边形的边数,关键是掌握多边形的内角和公式180(n-2)2、11【
13、解析】【详解】分析:本题考查的是平行线的内错角相等,角平分线的性质和三角形外角的性质.解析:AB/CD,DCE=118,AEC=118, AEC的角平分线EF与GF相交线于点F, AEF=FEC=59, BGF=132, F=11.故答案为11.3、; 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】先证明ABEACF,然后根据全等三角形的性质即可判定;利用全等三角形的性质即可判定;根据ASA即可证明三角形全等;无法证明该结论;根据ASA证明三角形全等即可【详解】解:在ABE和ACF中,ABEACF(AAS),BAE=CAF,BE=CF,故正确,BAE-BAC=CAF-BAC,即
14、1=2,故正确,ABEACF,AB=AC,在CAN和BAM中,CANBAM(ASA),故正确,CD=DN不能证明成立,故错误在AFN和AEM中,AFNAEM(ASA),故正确结论中正确结论的序号为;故答案为;【考点】本题主要考查了三角形全等的判定和性质,解题的关键是正确寻找全等三角形全等的条件4、2【解析】【分析】延长BD到E,使DE=BD,连接AE,证明ADECDB(SAS),可得AE=CB,EAD=BCD,再根据ABM和BCN是等腰直角三角形,证明MBNBAE,可得MN=BE,进而可得BD与MN的数量关系即可求解【详解】解:如图,延长BD到E,使DE=BD,连接AE, 线 封 密 内 号学
15、级年名姓 线 封 密 外 点D是AC的中点,AD=CD,在ADE和CDB中,ADECDB(SAS),AE=CB,EAD=BCD,ABM和BCN是等腰直角三角形,AB=BM,CB=NB,ABM=CBN=90,BN=AE,又MBN+ABC=360-90-90=180,BCA+BAC+ABC=180,MBN=BCA+BAC=EAD+BAC=BAE,在MBN和BAE中,MBNBAE(SAS),MN=BE,BE=2BD,MN=2BD又MN=4,BD=2,故答案为:2【考点】本题考查了全等三角形的判定与性质、等腰直角三角形,解决本题的关键是掌握全等三角形的判定与性质5、ADAC(DC或ABDABC等)【解
16、析】【分析】利用全等三角形的判定方法添加条件即可求解【详解】解:DABCAB,ABAB,当添加ADAC时,可根据“SAS”判断ABDABC;当添加DC时,可根据“AAS”判断ABDABC;当添加ABDABC时,可根据“ASA”判断ABDABC故答案为ADAC(DC或ABDABC等)【考点】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件四、解答题1、105【解析】【分析】先根据三角形的外角性质求出ADB,再根据三角形的外角性质计算即可【详解】解:ADBB+C,B45,C40,ADB40+4585,DFEA+ADB,A20,DFE85+2010
17、5【考点】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 2、证明见解析【解析】【分析】在BC上截取点E,并使得BE=BA,连接DE,证明ABDEBD,得到DEB=BAD=108,进一步计算出DEC=CDE=72得到CD=CE即可证明【详解】证明:在线段BC上截取BE=BA,连接DE,如下图所示:BD平分ABC,ABD=EBD, 在ABD和EBD中: ,ABDEBD(SAS),DEB=BAD=108,DEC=180-108=72,又AB=AC,C=ABC=(180-108)2=36,CDE=180-C-D
18、EC=180-36-72=72,DEC=CDE,CD=CE,BC=BE+CE=AB+CD【考点】本题考查了角平分线的定义,三角形内角和定理,全等三角形的判定与性质,等腰三角形性质等,本题的关键是能在BC上截取BE,并使得BE=BA,这是角平分线辅助线和全等三角形的应用的一种常见作法3、(1)见解析;(2)图:;图:【解析】【分析】(1)过点作交的延长线于点证明,根据全等三角形的性质可得,再证,由此即可证得结论;(2)图:,类比(1)中的方法证明即可;图:,类比(1)中的方法证明即可【详解】(1)证明:如图,过点作交的延长线于点0, 线 封 密 内 号学级年名姓 线 封 密 外 ,在和中,在和中
19、,(2)图:证明:过点作交于点,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 ,在和中,图:证明:如图,过点作交的延长线于点,在和中,在和中,【考点】本题是全等三角形的综合题,正确作出辅助线,构造全等三角形是解决问题的关键 线 封 密 内 号学级年名姓 线 封 密 外 4、360,见解析;720,1080;【解析】【分析】连接将已知图形补全为闭合四边形,根据三角形的外角性质可得,进而根据四边形的内角和即可求得;同理将2环四边形补全为五边形和三角形,2环五边形补全为六边形和四边形,2环n边形补全为和边形,根据多边形的内角和定理求解即可【详解】解:猜想:360连接,如图,2环四边形中,如
20、图,连接则2环四边形的内角和同理2环五边形补全为六边形和四边形,则内角和为2环n边形补全为和边形,则内角和为故答案为:360,720,1080;【考点】本题考查了多边形的内角和,三角形的外角性质,将2环n边形补全为和边形是解题的关键5、证明见解析【解析】【分析】根据线段的和差关系可得AEDF,根据平行线的性质可得DA,CFDBEA,利用ASA可证明ABEDCF,根据全等三角形的性质即可得结论【详解】AFDE,AFEFDEEF,即AEDF,AB/CD,DA, 线 封 密 内 号学级年名姓 线 封 密 外 CF/BE,CFDBEA,在ABEDCF中,ABEDCF,BECF【考点】本题考查平行线的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键