1、八年级数学上册第十四章整式的乘法与因式分解难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果,那么、的值等于()A,B,C,D,2、计算:()AaBCD3、下列运算中正确的是()Aa5 + a5
2、 = a10B(ab)3 = a3b3C(x4)3 = x7Dx2 + y2 =(x+y)24、a12可以写成()Aa6+a6Ba2a6Ca6a6Da12a5、计算的结果是()AaBCD6、如下列试题,嘉淇的得分是()姓名:嘉淇得分:将下列各式分解因式(每题20分,共计100分);A40分B60分C80分D100分7、计算(a+3)(a+1)的结果是()Aa22a+3Ba2+4a+3Ca2+4a3Da22a38、下列运算正确的是()A(a4)3=a7Ba4a3=a2C(3ab)2=9a2b2D-a4a6=a109、下列运算正确的是()ABCD10、下列运算正确的是()ABCD第卷(非选择题 7
3、0分)二、填空题(5小题,每小题4分,共计20分)1、若实数满足,则_2、已知,则_3、已知ab=a+b+1,则(a1)(b1)=_4、定义ab=a(b+1),例如23=2(3+1)=24=8则(x1)x的结果为_5、若xm6,xn2,则x2m3n_三、解答题(5小题,每小题10分,共计50分)1、我们在课堂上学习了运用提取公因式法、公式法等分解因式的方法,但单一运用这些方法分解某些多项式的因式时往往无法分解例如,通过观察可知,多项式的前三项符合完全平方公式,通过变形后可以与第四项结合再运用平方差公式分解因式,解题过程如下:,我们把这种分解因式的方法叫做分组分解法利用这种分解因式的方法解答下列
4、各题:(1)分解因式:(2)若三边满足,试判断的形状,并说明理由2、我们知道形如的二次三项式可以分解因式为,所以但小白在学习中发现,对于还可以使用以下方法分解因式这种在二次三项式中先加上9,使它与的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了(1)请使用小白发现的方法把分解因式;(2)填空:;(3)请用两种不同方法分解因式3、化简:(x3)2x2x+x3(x)2(x2)4、某校为了改善校园环境,准备在长宽如图所示的长方形空地上,修建两横纵宽度均为a米的三条小路,其余部分修建花圃.(1)用含a,b的代数式表示花圃的面积并化简。(2)记长方形空地的面
5、积为S1,花圃的面积为S2,若2S2-S1=7b2,求的值.5、第一步:阅读材料,掌握知识要把多项式分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得这时,由于中又有公因式,于是可提公因式,从而得到,因此有这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解第二步:理解知识,尝试填空:(1) 第三步:应用知识,因式分解:(2) x2-(p+q)x+pq;(3)第四步:提炼思想,拓展应用(4)已知三角形的三边长分别是a,b,c,且满足a2+2b2+c2=2b(a+c),试
6、判断这个三角形的形状,并说明理由-参考答案-一、单选题1、C【解析】【分析】先根据同底数幂的乘法和积的乘方计算法则计算出,由此进行求解即可得到答案【详解】解:3n=9,3m+3=15,解得:n=3,m=4,故选C【考点】本题主要考查了同底数幂的乘法,积的乘方,解题的关键在于能够熟练掌握相关计算法则2、D【解析】【分析】利用同底数幂的乘法法则运算【详解】解:,故选:D【考点】本题考查了同底数幂的乘法运算,解题的关键是掌握同底数幂相乘,底数不变,指数相加3、B【解析】【分析】根据合并同类项,单项式的除法,幂的乘方,完全平方公式进行计算,再选择即可【详解】解:A.a5+a5=2 a5,选项错误;B.
7、(ab)3 = a3b3,故选项正确;C.(x4)3 = x12,故选项错误;D.(x+y)2= x2 +2xy+ y2,故选项正确故选B【考点】本题考查了同类项的定义,同底数幂的乘法,积的乘方的性质,要求学生对于这些知识比较熟悉才能很好解决这类题目4、C【解析】【分析】分别根据合并同类项法则,同底数幂的乘法法则以及同底数幂的除法法则逐一判断即可【详解】解:Aa6+a6=2a6,故本选项不合题意;Ba2a6=a8,故本选项不合题意;Ca6a6=a12,故本选项符合题意;Da12a=a11,故本选项不合题意故选:C【考点】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟练掌握幂的运算法则
8、是解答本题的关键5、B【解析】【分析】根据同底数幂相乘,底数不变,指数相加计算即可.【详解】原式=a5.故选B.【考点】本题考查了同底数幂的乘法运算,熟练掌握运算法则是解答本题的关键.6、A【解析】【分析】根据提公因式法及公式法分解即可【详解】,故该项正确;,故该项错误;,故该项错误;,故该项错误;,故该项正确;正确的有:与共2道题,得40分,故选:A【考点】此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键7、A【解析】【分析】运用多项式乘多项式法则,直接计算即可【详解】解:(a+3)(a+1
9、)a23a+a+3a22a+3故选:A【考点】本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加8、D【解析】【分析】根据积的乘方,同底数幂的除法,完全平方公式,同底数幂的乘法分别求出每个式子的值,再判断即可【详解】A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.【考点】本题考查完全平方公式, 同底数幂的乘法, 幂的乘方与积的乘方, 同底数幂的除法.9、B【解析】【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以
10、单项式法则逐一判断即可【详解】解:A. ,故本选项不符合题意;B,正确,故本选项符合题意;C,故本选项不合题意;D,故本选项不合题意故选:B【考点】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键10、A【解析】【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可【详解】A选项,选项正确,故符合题意;B选项,选项错误,故不符合题意;C选项,选项错误,故不符合题意;D选项,选项错误,故不符合题意故选:A【考点】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键二、填空题1、【解析】【分析】把原式化为
11、可得再利用非负数的性质求解从而可得答案.【详解】解: , 而 解得: 故答案为:【考点】本题考查的是非负数的性质,利用完全平方公式的变形求解代数式的值,因式分解的应用,熟练的运用完全平方公式是解本题的关键.2、【解析】【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得的值,进而代入代数式即可求解【详解】解:,即,故答案为:【考点】本题考查了因式分解的应用,掌握完全平方公式是解题的关键3、2【解析】【分析】将(a1)(b1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得【详解】(a1)(b1)= abab+1,当ab=a+b+1时,原式=abab+1=a+b+1
12、ab+1=2,故答案为2【考点】本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用4、x21【解析】【分析】根据规定的运算,直接代值后再根据平方差公式计算即可【详解】解:根据题意得:(x1)x=(x1)(x+1)=x21故答案为:x21【考点】本题考查了平方差公式,实数的运算,理解题目中的运算方法是解题关键5、【解析】【分析】依据同底数幂的除法法则以及幂的乘方法则,即可得到结论【详解】解:,=368=,故答案为:【考点】本题主要考查了同底数幂的除法法则以及幂的乘方法则,熟练掌握运算法则是解题关键三、解答题1、 (1)(2)等腰三角形,见解析【解析】【分析】(
13、1)先分组,再利用完全平方公式和平方差公式继续分解即可;(2)先把所给等式左边利用分组分解法得到,由于,则,即,然后根据等腰三角形的判定方法进行解题(1)解:原式;(2)的为等腰三角形理由:,是等腰三角形【考点】本题考查等腰三角形的判定、因式分解的应用等知识,是重要考点,掌握相关知识是解题关键2、(1);(2);(3)【解析】【分析】(1)在上加16减去16,仿照小白的解法解答;(2)在原多项式上加再减去,仿照小白的解法解答;(3)将分解为13m与(-m)的乘积,仿照例题解答;在原多项式上加再减去仿照小白的解法解答【详解】(1)解:=;(2)解: =(x-y)(x-9y)故答案为:;(3)解法
14、1:原式解法2:原式【考点】此题考查多项式的因式分解,读懂例题及小白的解法,掌握完全平方公式、平方差公式的结构特征是解题的关键3、x3x7【解析】【分析】直接利用整式运算法则计算得出答案【详解】(x3)2x2x+x3(x)2(x2)=x6x2x-x3x2x2=x6-2-1-x3+2+2= x3x7【考点】本题主要考查整式的混合运算,正确运用整式运算法则是解答题目的关键.4、(1)2a2+10ab+8b2;(2)【解析】【分析】(1)把三条小路使花圃的面积变为一个矩形的面积,所以花圃的面积=(4a+2b-2a)(2a+4b-a),然后利用展开公式展开合并即可;(2)利用2S2-S1=7b2得到b
15、=2a,则用a表示S1、S2,然后计算它们的比值【详解】解:(1)平移后图形为:(空白处为花圃的面积)所以花圃的面积=(4a+2b-2a)(2a+4b-a)=(2a+2b)(a+4b)=2a2+8ab+2ab+8b2=2a2+10ab+8b2;(2)S1=(4a+2b)(2a+4b)=8a2+20ab+8b2,S2=2a2+10ab+8b2;2S2-S1=7b2,2(2a2+10ab+8b2)-(8a2+20ab+8b2)=7b2,b2=4a2,b=2a,S1=8a2+40a2+32a2=80a2,S2=2a2+20a2+32a2=54a2,【考点】本题考查了生活中的平移现象:在平面内,把一个
16、图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移通过平移把不规则的图形变为规则图形也考查了代数式5、(1)(2)(3)(4)等边三角形,理由见详解【解析】【分析】(1)如果把一个多项式各项分组并提出公因式后,它们的另一个因式刚好相同,那么这个多项式即可利用分组分解法来因式分解,据此即可求解;(2)先展开(pq)x,再利用分组分解法来因式分解,据此即可求解;(3)直接利用分组分解法来因式分解即可求解;(4)根据所给等式,先移项,再利用完全平方公式和等边三角形的判定求证即可【详解】解:(1)(2)(3)(4)等边三角形,理由如下:即这个三角形是等边三角形【考点】本题考查因式分解提公因式法,因式分解分组分解法,完全平方公式,等边三角形的判定,解题的关键是读懂材料并熟知因式分解的方法
Copyright@ 2020-2024 m.ketangku.com网站版权所有