ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:270.18KB ,
资源ID:636439      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-636439-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022-2023学年人教版八年级数学上册第十四章整式的乘法与因式分解综合测试试卷(详解版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022-2023学年人教版八年级数学上册第十四章整式的乘法与因式分解综合测试试卷(详解版).docx

1、八年级数学上册第十四章整式的乘法与因式分解综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知(x-m)(x+n)=x2-3x-4,则m-n的值为()A1B-3C-2D32、若x2+ax(x+)2

2、+b,则a,b的值为()Aa1,bBa1,bCa2,bDa0,b3、若,则、的值为()A,B,C,D,4、若2n+2n+2n+2n=2,则n=()A1B2C0D5、a12可以写成()Aa6+a6Ba2a6Ca6a6Da12a6、计算的结果是()ABCD7、计算:=()ABCD8、已知甲、乙、丙均为含x的整式,且其一次项的系数皆为正整数若甲与乙相乘的积为,乙与丙相乘的积为,则甲与丙相乘的积为()ABCD9、下面计算正确的是()ABCD10、下列运算正确的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:_2、分解因式:_3、计算_4、已知x2+3x=

3、1,求代数式3x2+9x2的值为_5、若A(21)(221)(241)(281)1,则A的末位数字是_三、解答题(5小题,每小题10分,共计50分)1、因式分解:(1); (2); (3)2、因式分解:3、阅读理解:若满足,求的值解:设,则,迁移应用:(1)若满足,求的值;(2)如图,点,分别是正方形的边、上的点,满足,为常数,且,长方形的面积是,分别以、作正方形和正方形,求阴影部分的面积4、对于任何实数,我们规定符号的意义是:,按照这个规定请你计算:当时,的值5、已知:x2y2=12,x+y=3,求2x22xy的值-参考答案-一、单选题1、D【解析】【分析】把原式的左边利用多项式乘多项式展开

4、,合并后与右边对照 即可得到m-n的值【详解】(x-m)(x+n)=x2+nx-mx-mn=x2+(n-m)x-mn,(x-m)(x+n)=x2-3x-4,n-m=-3,则m-n=3,故选D【考点】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键2、B【解析】【分析】根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解【详解】解:x2+ax(x+)2+b=x2+x+b,a=1,+b=0,a1,b,故选B【考点】本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键3、D【解析】【分析】根据单项式的乘法法则,乘号前面的数相乘,乘号后面的数相乘,再转化成科学记数法表示数,即可求出M

5、,a的值【详解】解:=M=8,a=10故选D【考点】本题考查了单项式的乘法,同底数幂的乘法,科学记数法熟练掌握各个运算法则和科学记数法表示数的计算方法是解题的关键4、A【解析】【分析】利用乘法的意义得到42n=2,则22n=1,根据同底数幂的乘法得到21+n=1,然后根据零指数幂的意义得到1+n=0,从而解关于n的方程即可【详解】2n+2n+2n+2n=2,42n=2,22n=1,21+n=1,1+n=0,n=-1,故选A【考点】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即aman=am+n(m,n是正整数)5、C【解析】

6、【分析】分别根据合并同类项法则,同底数幂的乘法法则以及同底数幂的除法法则逐一判断即可【详解】解:Aa6+a6=2a6,故本选项不合题意;Ba2a6=a8,故本选项不合题意;Ca6a6=a12,故本选项符合题意;Da12a=a11,故本选项不合题意故选:C【考点】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟练掌握幂的运算法则是解答本题的关键6、A【解析】【分析】由单项式乘以单项式,即可得到答案【详解】解:;故选:A【考点】本题考查了单项式乘以单项式,解题的关键是熟练掌握运算法则进行解题7、B【解析】【分析】直接利用单项式乘以单项式运算法则计算得出答案.【详解】解:(2a)(ab)=2

7、a2b故选B.【考点】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.8、B【解析】【分析】把题中的积分别分解因式后,确定出甲乙丙各自的整式,即可解答【详解】解:甲与乙相乘的积为,乙与丙相乘的积为,甲为,乙为,丙为,则甲与丙相乘的积为,故选:B【考点】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键9、C【解析】【分析】根据合并同类项法则,积的乘方、同底数幂乘法法则逐一判断即可得答案.【详解】A.2a和3b不是同类项,不能合并,故该选项计算错误,不符合题意,B.a2和a3不是同类项,不能合并,故该选项计算错误,不符合题意,C.(-2a3b2)3=-8a9

8、b6,故该选项计算正确,符合题意,D.a3a2=a5,故该选项计算错误,不符合题意,故选C.【考点】本题考查整式的运算,熟练掌握合并同类项法则、积的乘方及同底数幂乘法法则是解题关键.10、B【解析】【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可【详解】解:A. ,故本选项不符合题意;B,正确,故本选项符合题意;C,故本选项不合题意;D,故本选项不合题意故选:B【考点】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键二、填空题1、【解析】【分析】原式利用十字相乘法分解即可【详解】原式=(x-2)(x+5),故答案为

9、:(x-2)(x+5)【考点】此题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键2、【解析】【分析】首先将前三项分组进而利用完全平方公式和平方差公式分解因式得出即可【详解】解:故答案为:【考点】本题考查了分组分解法分解因式,分组分解法一般是针对四项或四项以上多项式的因式分解,分组目的是分组后能出现公因式或能应用公式3、【解析】【分析】根据同底数幂乘法法则计算即可得答案【详解】=【考点】本题考查同底数幂乘法,同底数幂相乘,底数不变,指数相加;熟练掌握运算法则是解题关键4、1【解析】【分析】将所求代数式变形,再把已知整体代入求值.【详解】解:3x2+9x-2=3(x2+3x)-2

10、=31-2=1故答案为1.【考点】本题考查了代数式求值关键是将所求代数式变形,采用整体代入法求解.5、6【解析】【详解】解:原式=的末位数是以2、4、8、6这四个数字进行循环,则的末位数字是6故答案为:6三、解答题1、(1);(2);(3)【解析】【分析】(1)直接提取公因式2a,即可得出答案;(2)首先提取公因式(x-y),进而利用平方差公式分解因式得出答案;(3)直接利用平方差公式分解因式,进而利用完全平方公式分解因式得出答案【详解】解:(1)=;(2)=;(3)=【考点】此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式分解因式是解题关键2、【解析】【分析】利用完全平方公式进行分

11、解因式即可得答案【详解】=【考点】本题考查了利用完全平方公式分解因式,熟练掌握完全平方公式的结构特征是解题的关键3、 (1)-3(2)【解析】【分析】(1)根据题意设,可得,根据,代入计算即可得出答案;(2)设正方形的边长为,则,可得,;利用题干中的方法可求得,利用阴影部分的面积等于正方形与正方形的面积之差即可求得结论(1)解:设,则:,(2)解:设正方形的边长为,则,长方形的面积是, 【考点】本题主要考查了因式分解的应用,完全平方公式的几何背景,本题是阅读型题目,利用换元的方法解答是解题的关键4、1【解析】【分析】应先根据所给的运算方式列式并根据平方差公式和单项式乘多项式的运算法则化简,再把已知条件整体代入求解即可.【详解】解:=原式=【考点】本题考查了平方差公式,单项式乘多项式,弄清楚规定运算的运算方法是解题的关键.5、2x22xy=28【解析】【分析】先求出xy=4,进而求出2x=7,而2x22xy=2x(xy),代入即可得出结论【详解】x2y2=12,(x+y)(xy)=12,x+y=3,xy=4,+得,2x=7,2x22xy=2x(xy)=74=28【考点】本题考查了因式分解的应用,代数值求值,二元一次方程组的特殊解法等,求出x-y=4是解本题的关键.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1