1、八年级数学上册第十四章整式的乘法与因式分解章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、计算:=()ABCD2、已知则的大小关系是()ABCD3、下面计算正确的是()ABCD4、已知被除式是x3
2、+3x21,商式是x,余式是1,则除式是()Ax2+3x1Bx2+3xCx21Dx23x+15、已知a、b、c为ABC的三边,且满足a2c2b2c2a4b4,则ABC是()A直角三角形B等腰三角形C等腰三角形或直角三角形D等腰直角三角形6、要使多项式不含的一次项,则与的关系是()A相等B互为相反数C互为倒数D乘积为7、下列因式分解正确的是()Aa4b6a3b9a2ba2b(a26a9)Bx2x(x)2Cx22x4(x2)2Dx24(x4)(x4)8、下列运算正确的是()ABCD9、计算的结果是()AaBCD10、已知m2n2nm2,则的值是()A1B0C1D第卷(非选择题 70分)二、填空题(
3、5小题,每小题4分,共计20分)1、若、互为相反数,c、d互为倒数,则_2、分解因式_3、分解因式:_4、计算:_5、若,则代数式的值等于_三、解答题(5小题,每小题10分,共计50分)1、已知的展开式中不含项,且一次项的系数为14,求常数的值.2、计算(1)2a2(abb2)5a(a2bab2)(2)计算9(x2)(x2)(3x2)2(3)计算(a-b+c)(a-b-c)(4)用乘法公式计算:3、设是一个两位数,其中a是十位上的数字(1a9)例如,当a4时,表示的两位数是45(1)尝试:当a1时,1522251210025;当a2时,2526252310025;当a3时,3521225 ;(
4、2)归纳:与100a(a1)25有怎样的大小关系?试说明理由(3)运用:若与100a的差为2525,求a的值4、.5、分解因式:-参考答案-一、单选题1、B【解析】【分析】直接利用单项式乘以单项式运算法则计算得出答案.【详解】解:(2a)(ab)=2a2b故选B.【考点】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.2、A【解析】【分析】先把a,b,c化成以3为底数的幂的形式,再比较大小.【详解】解:故选A.【考点】此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.3、C【解析】【分析】根据合并同类项法则,积的乘方、同底数幂乘法法则逐一判断即可得答案.【详解
5、】A.2a和3b不是同类项,不能合并,故该选项计算错误,不符合题意,B.a2和a3不是同类项,不能合并,故该选项计算错误,不符合题意,C.(-2a3b2)3=-8a9b6,故该选项计算正确,符合题意,D.a3a2=a5,故该选项计算错误,不符合题意,故选C.【考点】本题考查整式的运算,熟练掌握合并同类项法则、积的乘方及同底数幂乘法法则是解题关键.4、B【解析】【详解】分析:按照“被除式、除式、商式和余式间的关系”进行分析解答即可.详解:由题意可得,除式为:=.故选B.点睛:熟知“被除式、除式、商式和余式间的关系:被除式=除式商式+余式”是解答本题的关键.5、C【解析】【分析】移项并分解因式,然
6、后解方程求出a、b、c的关系,再确定出ABC的形状即可得解【详解】解:移项得,a2c2b2c2a4+b4=0,c2(a2b2)(a2+b2)(a2b2)=0,(a2b2)(c2a2b2)=0,所以,a2b2=0或c2a2b2=0,即a=b或a2+b2=c2,因此,ABC等腰三角形或直角三角形故选:C【考点】本题考查了因式分解的应用以及勾股定理的逆定理的应用,提取公因式并利用平方差公式分解因式得到a、b、c的关系式是解题的关键6、A【解析】【分析】计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q相等.【详解】解:乘积的多项式不含x的一次项p-q=0p
7、=q故选择A.【考点】此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.7、B【解析】【分析】直接利用提取公因式法以及公式法分解因式进而判断即可【详解】解:A、a4b6a3b9a2ba2b(a26a9)a2b(a3)2,故此选项错误;B、x2x(x)2,故此选项正确;C、x22x4,无法运用完全平方公式分解因式,故此选项错误;D、x24(x2)(x2),故此选项错误;故选:B【考点】本题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法进行解题8、D【解析】【分析】由单项式乘单项式、幂的乘方、完全平方公式、积的乘方,分别进行判断,即可得到答案【详解】解:A.,此选项错误;B. ,
8、此选项错误;C. ,此选项错误;D. ,此选项正确;故选D【考点】本题考查了单项式乘单项式、幂的乘方、完全平方公式、积的乘方,解题的关键是熟练掌握运算法则进行解题9、B【解析】【分析】根据同底数幂相乘,底数不变,指数相加计算即可.【详解】原式=a5.故选B.【考点】本题考查了同底数幂的乘法运算,熟练掌握运算法则是解答本题的关键.10、C【解析】【详解】分析:首先进行移项,然后转化为两个完全平方式,根据非负数的性质求出m和n的值,然后代入所求的代数式得出答案详解:,解得:m=2,n=2,故选C点睛:本题主要考查的是非负数的性质以及代数式的求值,属于中等难度的题型将代数式转化为两个完全平方式是解决
9、这个问题的关键二、填空题1、-2【解析】【分析】利用相反数,倒数的性质确定出a+b,cd的值,代入原式计算即可求出值【详解】解:根据题意得:a+b=0,cd=1,则原式=0-2=-2故答案为:-2【考点】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键2、【解析】【分析】先提取公因式m,再对余下的多项式利用完全平方公式继续分解【详解】解:m3-4m2+4m=m(m2-4m+4)=m(m-2)2故答案为:m(m-2)2【考点】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止3、5(m2)2【
10、解析】【分析】先提取公因式,再用完全平方公式分解因式即可【详解】解:5(m24m+4)5(m2)2故答案为:5(m2)2【考点】本题考查了提公因式法与公式法的综合运用,掌握a22ab+b2(ab)2是解题的关键4、【解析】【分析】根据同底数幂的乘法法则解答即可【详解】解:故答案为:【考点】本题考查了同底数幂的乘法,属于基础题目,熟练掌握运算法则是解题的关键5、9【解析】【分析】先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解【详解】解:,=9故答案为:9【考点】本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键三、解
11、答题1、,【解析】【分析】根据多项式乘以多项式的运算法则展开化简,依题意,项的系数为0,一次项系数为14,列方程组求解即可【详解】依题意,得:解得:,【考点】本题考查了整式的混合运算和多项式的定义,涉及的知识有:多项式乘以多项式,同底数幂的乘法,熟练掌握运算法则以及依据题意得到方程组是解本题的关键2、(1)(2)(3);(4)1010025【解析】【分析】分别根据整式的乘法法则及公式的运用进行求解.【详解】(1)2a2(abb2)5a(a2bab2)=-a3b-2a2b2-5a3b+5a2b2=(2)计算9(x2)(x2)(3x2)2=9x2-36-9x2+12x-4=(3)计算(a-b+c)
12、(a-b-c)=(a-b)2-c2=(4)用乘法公式计算:=(1000+5)2=10002+210005+52=1000000+10000+25=1010025【考点】此题主要考查整式的运算,解题的关键是熟知整式的运算法则进行求解.3、 (1);(2)相等,证明见解析;(3)【解析】【分析】(1)仔细观察的提示,再用含有相同规律的代数式表示即可;(2)由再计算100a(a1)25,从而可得答案;(3)由与100a的差为2525,列方程,整理可得再利用平方根的含义解方程即可(1)解:当a1时,1522251210025;当a2时,2526252310025;当a3时,3521225;(2)解:相等,理由如下: 100a(a1)25= (3) 与100a的差为2525, 整理得: 即 解得: 1a9,【考点】本题考查的是数字的规律探究,完全平方公式的应用,单项式乘以多项式,利用平方根的含义解方程,理解题意,列出运算式或方程是解本题的关键4、【解析】【分析】先计算乘方,然后计算括号,再计算除法即可.【详解】解:原式【考点】本题主要考查了整式的运算,涉及幂的乘方,多项式的乘除运算,熟练掌握运算法则是解题的关键.5、【解析】【分析】先分组,然后利用提公因式法和平方差公式因式分解即可【详解】解:=【考点】此题考查的是因式分解,掌握利用分组分解法、提公因式法和公式法因式分解是解题关键