1、人教版八年级数学上册第十三章轴对称专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,的垂直平分线交于点,若,则的度数是()A25B20C30D152、一个三角形具备下列条件仍不是等边三角形的是
2、()A一个角的平分线是对边的中线或高线B两边相等,有一个内角是60C两角相等,且两角的和是第三个角的2倍D三个内角都相等3、对于问题:如图1,已知AOB,只用直尺和圆规判断AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则AOB=90.则小意同学判断的依据是()A等角对等边B线段中垂线上的点到线段两段距离相等C垂线段最短D等腰三角形“三线合一”4、如图,在矩形中,动点满足,则点到、两点距离之和的最小值为()ABCD5、下列电视台标志中是轴对称图形的是()ABCD6、以下是清华大学、北京大学、上海交
3、通大学、浙江大学的校徽,其中是轴对称图形的是()ABCD7、2020年初,新冠状病毒引发肺炎疫情,全国多家医院纷纷派医护人员驰援武汉下面是四家医院标志得图案,其中是轴对称图形得是()ABCD8、在平面直角坐标系中,点关于轴对称的点的坐标为()ABCD9、下列图案是几家银行的标志,其中是轴对称图形的有()A1个B2个C3个D4个10、如图,RtACB中,ACB90,ABC的角平分线AD、BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB135;BFBA;PHPD;连接CP,CP平分ACB,其中正确的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题
4、4分,共计20分)1、BC是等腰ABC和等腰DBC的公共底(A与D不重合),则直线AD必是_的垂直平分线2、在平面直角坐标系中,点关于直线的对称点的坐标是_3、如图,在中,的中垂线交于点,交于点,已知,的周长为22,则_4、如图,在ABC中,AB=AC,BAC = 36,DE是线段AC的垂直平分线,若BE=,AE=,则用含、的代数式表示ABC的周长为_5、如图,在中,分别以点为圆心,大于的长为半径画弧,两弧相交于点作直线,交边于点,连接,则的周长为_三、解答题(5小题,每小题10分,共计50分)1、如图,将一长方形纸片ABCD沿着EF折叠,已知AFBE,DFCE,CE交AF于点G,过点G作GH
5、EF,交线段BE于点H(1)判断CGH与DFE是否相等,并说明理由;(2)判断GH是否平分AGE,并说明理由;若DFA54,求HGE的度数2、如图,在中,,;点在上,连接并延长交于(1)求证:;(2)求证:;(3)若,与有什么数量关系?请说明理由3、在学习矩形的过程中,小明遇到了一个问题:在矩形中,是边上的一点,试说明的面积与矩形的面积之间的关系他的思路是:首先过点作的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点作的垂线,垂足为(只保留作图迹)在和中,又,_,_又_同理可得_4、尺规作图:校园有两条路O
6、A、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P(不写画图过程,保留作图痕迹)5、如图,是边长为2的等边三角形,是顶角为120的等腰三角形,以点为顶点作,点、分别在、上(1)如图,当时,则的周长为_;(2)如图,求证:-参考答案-一、单选题1、D【解析】【分析】根据等要三角形的性质得到ABC,再根据垂直平分线的性质求出ABD,从而可得结果【详解】解:AB=AC,C=ABC=65,A=180-652=50,MN垂直平分AB,AD=BD,A=ABD=50,DBC=ABC-ABD=15,故
7、选D【考点】本题考查了等腰三角形的性质和垂直平分线的性质,解题的关键是掌握相应的性质定理2、A【解析】【分析】根据等边三角形的判定方法即可解答.【详解】选项A,一个角的平分线是对边的中线或高线,能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B,两边相等,有一个内角是60,根据有一个角为60的等腰三角形是等边三角形,即可判定该三角形是等边三角形;选项C,两角相等,且两角的和是第三个角的2倍 ,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形;选项D,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三
8、角形是等边三角形.故选A.【考点】本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的关键.3、B【解析】【分析】由垂直平分线的判定定理,即可得到答案【详解】解:根据题意,CD=CE,OE=OD,AO是线段DE的垂直平分线,AOB=90;则小意同学判断的依据是:线段中垂线上的点到线段两段距离相等;故选:B【考点】本题考查了垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行判断4、D【解析】【分析】由,可得PAB的AB边上的高h=2,表明点P在平行于AB的直线EF上运动,且两平行线间的距离为2;延长FC到G,使FC=CG,连接AG交EF于点H,则点P与H重合时,P
9、A+PB最小,在RtGBA中,由勾股定理即可求得AG的长,从而求得PA+PB的最小值【详解】解:设PAB的AB边上的高为h h=2表明点P在平行于AB的直线EF上运动,且两平行线间的距离为2,如图所示BF=2四边形ABCD为矩形BC=AD=3,ABC=90FC=BC-BF=3-2=1延长FC到G,使CG=FC=1,连接AG交EF于点HBF=FG=2EFAB EFG=ABC=90EF是线段BG的垂直平分线PG=PBPA+PB=PA+PGAG当点P与点H重合时,PA+PB取得最小值AG在RtGBA中,AB=5,BG=2BF=4,由勾股定理得: 即PA+PB的最小值为故选:D【考点】本题是求两条线段
10、和的最小值问题,考查了矩形的性质,勾股定理,线段垂直平分线的性质、两点之间线段最短等知识,难点在于确定点P运动的路径,路径确定后就是典型的将军饮马问题5、A【解析】【分析】根据轴对称图形的定义进行判断,即一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形【详解】解:A选项中的图形是轴对称图形,对称轴有两条,如图所示;B、C、D选项中的图形均不能沿某条直线折叠,直线两旁的部分能够互相重合,因此,它们都不是轴对称图形;故选:A【考点】本题考查了轴对称图形的概念,其中正确理解轴对称图形的概念是解题关键6、B【解析】【分析】利用轴对称图形定义进行依次分析即可【详解】A.不
11、是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:B【考点】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形7、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:选项B能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是做轴对称图形;选项A、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部
12、分能够互相重合,所以不是做轴对称图形;故选:B【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合8、D【解析】【分析】利用关于x轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可【详解】点关于轴对称的点的坐标为(3,-2),故选:D【考点】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键9、C【解析】【分析】根据轴对称图形的概念“如果一个图形沿着一条直线折叠,直线两旁的部分能够相互重合的图形”可直接进行排除选项【详解】解:都是轴对称图形,而不是轴对称图形,所以是轴对称图形的有3个;故选C【考点】本题主要考查
13、轴对称图形的识别,熟练掌握轴对称图形的概念是解题的关键10、D【解析】【分析】根据三角形内角和定理以及角平分线定义判断;根据全等三角形的判定和性质判断;根据角平分线的判定与性质判断【详解】解:在ABC中,ACB=90,BAC+ABC=90,又AD、BE分别平分BAC、ABC,BAD+ABE=(BAC+ABC)=(180-ACB)=(180-90)=45,APB=135,故正确BPD=45,又PFAD,FPB=90+45=135,APB=FPB,又ABP=FBP,BP=BP,ABPFBP(ASA),BAP=BFP,AB=FB,PA=PF,故正确在APH和FPD中,APH=FPD=90,PAH=B
14、AP=BFP,PA=PF,APHFPD(ASA),PH=PD,故正确连接CP,如下图所示:ABC的角平分线AD、BE相交于点P,点P到AB、AC的距离相等,点P到AB、BC的距离相等,点P到BC、AC的距离相等,点P在ACB的平分线上,CP平分ACB,故正确,综上所述,均正确,故选:D【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理掌握相关性质是解题的关键二、填空题1、BC【解析】【分析】根据题意作图,再由“到线段两个端点距离相等的点在线段的垂直平分线上”及“两点确定一条直线”即可解答【详解】如图,根据题意得ABAC,DBDC,点A、D都在BC的垂直平分线上两点确
15、定一条直线,直线AD是BC的垂直平分线故答案为:BC【考点】此题考查了线段垂直平分线性质的逆定理及直线的公理,属基础题2、故答案为: 【考点】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质,属于基础题型,熟练掌握它们的性质和运用是解答的关键100【解析】【分析】先求出点到直线的距离,再根据对称性求出对称点到直线的距离,从而得到点的横坐标,即可得解【详解】点,点到直线的距离为,点关于直线的对称点到直线的距离为3,点的横坐标为,对称点的坐标为.故答案为【考点】本题考查了坐标与图形变化对称,根据轴对称性求出对称点到直线的距离,从而得到横坐标是解题的关键,作出图形更形象直观3、12【
16、解析】【分析】由的中垂线交于点,可得再利用的周长为22,列方程解方程可得答案【详解】解: 的中垂线交于点, ,的周长为22, 故答案为:【考点】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线的性质是解题的关键4、2a+3b【解析】【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,BAC=36,所以易证AE=CE=BC=b,从可知ABC的周长为:AB+AC+BC=2a+3b【详解】解:ABAC,BEa,AEb,ACABab,DE是线段AC的垂直平分线,AECEb,ECABAC36,BAC36,ABCACB72,BCEACBECA36,BEC180ABCECB72,
17、CEBCb,ABC的周长为:ABACBC2a3b故答案为2a+3b【考点】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AECEBC,本题属于中等题型5、【解析】【分析】由题意可得MN为AB的垂直平分线,所以AD=BD,进一步可以求出的周长.【详解】在中,分别以A、B为圆心,大于的长为半径画弧,两弧交于M,N,作直线MN,交BC边于D,连接AD;MN为AB的垂直平分线,AD=BD,的周长为:AD+DC+AC=BC+AC=13;故答案为13.【考点】本题主要考查的是垂直平分线的运用,掌握定义及相关方法即可.三、解答题1、(1)CGHDFE,理由见解析;(2
18、)GH平分AGE;理由见解析;HGE63【解析】【分析】(1)根据平行线的性质得到AGCAFD,AGHAFE,根据角的和差关系即可得到CGHDFE;(2)根据平行线的性质得到AGHAFE,HGEGEF,根据折叠的性质可得1GFE,即可得出根据角平分线的定义即可得到结论;根据平行线的性质可得AGC=DFG,由可知AGHEGH,根据平角的定义即可得答案【详解】(1)CGHDFE,理由如下:四边形ABCD是矩形,DF/CE,AGCAFD,GHEF,AGHAFE,CGHAGC+AGH,DFEAFD+AFE,CGHDFE;(2)GH平分AGE;理由如下:如图,GHEF,AGHAFE,HGEGEF,CED
19、F,1GEF,将一长方形纸片ABCD沿着EF折叠,1GFE,GFEGEF,AGHEGH,GH平分AGE;CE/DF,DFG54,AGC=DFG=54,AGHEGH,HGE(180-DFG)=63【考点】本题主要考查折叠的性质及平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握相关性质是解题关键2、(1)见解析;(2)见解析;(3)若 ,则,理由见解析【解析】【分析】(1)首先利用SAS证明,即可得出结论;(2)利用全等三角形的性质和等量代换即可得出,从而有,则结论可证;(3)直接根据等腰三角形三线合一得出,又因为,则结论可证【详解】解答:(1)证明
20、:, 在和中, ;(2)证明:,即,;(3)若 ,则理由如下:,BE是中线,【考点】本题主要考查全等三角形的判定及性质,等腰三角形的性质,掌握全等三角形的判定及性质和等腰三角形的性质是解题的关键3、【解析】【分析】过点作的垂线,垂足为,分别利用AAS证得,利用全等三角形的面积相等即可求解【详解】证明:用直尺和圆规,过点作的垂线,垂足为(只保留作图迹)如图所示,在和中,又,又同理可得故答案为:、【考点】本题考查了全等三角形的判定和性质,掌握全等三角形的面积相等是解题的关键4、见解析.【解析】【分析】分别作线段CD的垂直平分线和AOB的角平分线,它们的交点即为点P【详解】如图,点P为所作【考点】本
21、题考查了作图应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键5、(1)4;(2)见解析【解析】【分析】(1)首先证明BDMCDN,进而得出DMN是等边三角形,BDM=CDN=30,NC=BM=DM=MN,即可解决问题;(2)延长至点,使得,连接,首先证明,再证明,得出,进而得出结果即可【详解】解:(1)是等边三角形,是等边三角形,则,是顶角的等腰三角形,在和中,是等边三角形,的周长(2)如图,延长至点,使得,连接,是等边三角形,是顶角的等腰三角形,在和中,在和中,又,【考点】本题考查了全等三角形的判定与性质及等边三角形的性质及等腰三角形的性质,掌握全等三角形的性质与判定,等边三角形及等腰三角形的性质是解题的关键