1、人教版八年级数学上册第十一章三角形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、三个等边三角形的摆放位置如图所示,若,则的度数为()ABCD2、一个多边形除一个内角外其余内角的和为1510,则这
2、个多边形对角线的条数是()A27B35C44D543、如图,、是的外角角平分线,若,则的大小为()ABCD4、下面四个图形中,线段是的高的是()ABCD5、一个缺角的三角形ABC残片如图所示,量得A60,B75,则这个三角形残缺前的C的度数为()A75B60C45D406、如图所示,已知G为直角ABC的重心,且,则AGD的面积是()A9cm2B12cm2C18cm2D20cm27、若正多边形的一个外角是,则这个正多边形的内角和是()ABCD8、一个多边形的边数由原来的3增加到n时(n3,且n为正整数),它的外角和()A增加(n2)180B减小(n2)180C增加(n1)180D没有改变9、如图
3、,AOB是一钢架,AOB15,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH添的钢管长度都与OE相等,则最多能添加这样的钢管()根A2B4C5D无数10、如图7,ABBC,AE平分BAD交BC于E,AEDE,1+290,M,N分别是BA,CD延长线上的点,EAM和EDN的平分线交于点F下列结论:ABCD;AEB+ADC180;DE平分ADC;F135,其中正确的有()A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC的中线BD、CE相交于点F,若四边形AEFD的面积为6,则CBF的面积为_2、如图,沿直线AB翻折后能与重合,沿
4、直线AC翻折后能与重合,AD与CE相交于点F,若,则_3、如图,BP是ABC中ABC的平分线,CP是ACB的外角的平分线,如果ABP20,ACP50,则P_ 4、如图,在ABC中,D为BC上的一点,E为AD上的一点,BE的延长线交AC于点F已知,(a,b为不小于2的整数),则的值是_5、如图,将等边三角形、正方形和正五边形按如图所示的位置摆放,则_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,(1)求证:;(2)求的度数2、(1)探究:如图1,求证:;(2)应用:如图2,求的度数3、已知a,b,c分别为的三边,且满足,(1)求c
5、的取值范围;(2)若的周长为12,求c的值4、如图,在ABC中,BAC90,ADBC于点D,BE平分ABC, AD、BE相交于点F(1)若CAD36,求AEF的度数;(2)试说明:AEFAFE5、如图,在中,AD是的角平分线,求的度数-参考答案-一、单选题1、B【解析】【分析】先根据图中是三个等边三角形可知三角形各内角均等于60,用表示出中间三角形的各内角,再根据三角形的内角和即可得出答案【详解】解:如图所示,图中三个等边三角形,由三角形的内角和定理可知:,即,又,故答案选B【考点】本题考查等边三角形的性质及三角形的内角和定理,熟悉等边三角形各内角均为60是解答此题的关键2、C【解析】【详解】
6、设这个内角度数为x,边数为n,(n2)180x=1510,180n=1870+x,n为正整数,n=11,=44,故选C.点睛:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.3、B【解析】【分析】首先根据三角形内角和与P得出PBC+PCB,然后根据角平分线的性质得出ABC和ACB的外角和,进而得出ABC+ACB,即可得解.【详解】PBC+PCB=180-P=180-60=120、是的外角角平分线DBC+ECB=2(PBC+PCB)=240ABC+ACB=180-DBC+180-ECB=360-240=120A=60故选:B.【考点】此题主要考查角平分线以及三
7、角形内角和的运用,熟练掌握,即可解题.4、D【解析】【分析】根据三角形高的定义进行判断【详解】解:线段AD是ABC的高,则过点A作对边BC的垂线,则垂线段AD为ABC的高选项A、B、C错误,故选:D【考点】本题考查了三角形的高:三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段5、C【解析】【分析】利用三角形内角和定理求解即可.【详解】因为三角形内角和为180,且A = 60,B = 75,所以C=1806075=45.【考点】三角形内角和定理是常考的知识点.6、A【解析】【分析】由于G为直角ABC的重心,所以BG2GD,ADDC,根据三角形的面积公式可以推出,而ABC的面
8、积根据已知条件可以求出,那么AGD的面积即可求得【详解】解:G为直角ABC的重心,BG2GD,ADDC,而,故选:A【考点】本题主要考查了三角形的重心的性质,解题的关键是根据G为直角ABC的重心,得出BG2GD,ADDC7、B【解析】【分析】利用多边形外角求得该多边形的边数,再利用多边形内角和公式即可解答【详解】解:多边形外角和为360,故该多边形的边数为36060=6;多边形内角和公式为:(n-2)180=(6-2)180=720故选:B【考点】本题考查了多边形外角和以及多边形内角和公式,熟练掌握相关公式是解题关键8、D【解析】【分析】根据多边形的外角和等于360,与边数无关即可解答.【详解
9、】多边形的外角和等于360,与边数无关,一个多边形的边数由3增加到n时,其外角度数的和还是360,保持不变故选D【考点】本题考查了多边形的外角和,熟知多边形的外角和等于360是解题的关键.9、C【解析】【详解】分析:因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的0BQ的度数(必须90),就可得出钢管的根数详解:如图所示,AOB=15,OE=FE,GEF=EGF=152=30,EF=GF,所以EGF=30GFH=15+30=45GH=GFGHF=45,HGQ=45+15=60GH=HQ,GQH=60,QHB=60+15=75,QH=QBQBH=75,HQ
10、B=180-75-75=30,故OQB=60+30=90,不能再添加了故选C点睛:根据等腰三角形的性质求出各相等的角,然后根据三角形内角和外角的关系解答10、C【解析】【分析】先根据ABBC,AE平分BAD交BC于点E,AEDE,1+2=90,EAM和EDN的平分线交于点F,由三角形内角和定理以及平行线的性质即可得出结论【详解】解:标注角度如图所示:ABBC,AEDE,1+AEB=90,DEC+AEB=90,1=DEC,又1+2=90,DEC+2=90,C=90,B+C=180,ABCD,故正确;ADN=BAD,ADC+ADN=180,BAD+ADC=180,又AEBBAD,AEB+ADC18
11、0,故错误;4+3=90,2+1=90,而3=1,2=4,ED平分ADC,故正确;1+2=90,EAM+EDN=360-90=270EAM和EDN的平分线交于点F,EAF+EDF=270=135AEDE,3+4=90,FAD+FDA=135-90=45,F=180-(FAD+FDA)=180-45=135,故正确故选:C【考点】本题主要考查了平行线的性质与判定、三角形内角和定理、直角三角形的性质及角平分线的计算,解题的关键是熟知三角形的内角和等于180二、填空题1、6【解析】【分析】由中线的性质可知,四边形AEFD的面积与三角形DFC的面积之和为三角形ABC面积的一半,同理三角形DFC与三角形
12、BFC的面积之和也为三角形ABC面积的一半,即三角形BFC的面积等于四边形AEFD的面积【详解】解:ABC的中线BD、CE相交于点F,故答案为:【考点】本题考查了三角形中线的性质,能够准确地找到所求图形面积与已知图形面积之间的联系是快速解决本题的关键2、123【解析】【分析】根据折叠前后对应角相等和三角形内角和定理可得BAD=BAC=133,ACE=ACB=29,再求出DAC,根据三角形外角的性质可求得m【详解】解:,BAC=180-18-29=133,沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,BAD=BAC=133,ACE=ACB=29,DAC=360-BAD-BAC=94,CFD
13、=ACE+DAC=29+94=123,即m=123,故答案为:123【考点】本题考查三角形内角和定理和外角定理,折叠的性质理解折叠前后对应角相等是解题关键3、30【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出P的度数【详解】解:BP是ABC中ABC的平分线,CP是ACB的外角的平分线,ABPCBP20,ACPMCP50,PCM是BCP的外角,PPCMCBP502030,故答案为:30【考点】本题考查了角平分线的性质及三角形外角的性质,熟练掌握上述知识点是解题的关键4、【解析】【分析】利用同高的三角形面积之比等于底边之比进行三角形的面积转化即可完成求解【
14、详解】解:,故答案为:【考点】本题考查了同高的三角形面积的转化,解题关键是理解同高的三角形面积之比等于对应的底边之比即可5、#42度【解析】【分析】利用多边形的外角和定理,即减去等边三角形的一个内角的度数,减去正五边形的一个内角的度数,减去正方形的一个内角的度数,再减去和的度数,最后得出答案【详解】等边三角形的内角的度数是,正方形的内角的度数为,正五边形的内角的度数是,则故答案为:【考点】此题考查了多边形外角和定理,正多边形内角和公式,熟练掌握相关知识及正确运算是解题关键三、解答题1、 (1)证明见解析;(2)【解析】【分析】(1)利用三角形内角和定理求出,再利用折叠和角平分线的性质证明,即可
15、证明;(2)利用三角形内角和定理求出,再利用对顶角相等证明,再利用三角形内角和定理即可求出(1)证明:,,AE平分,(2)解:,且,【考点】本题考查三角形内角和定理,折叠的性质,角平分线的性质,对顶角相等,(1)的关键是求出,证明;(2)的关键是求出2、230【解析】【分析】(1)连接OA并延长,由三角形外角的性质可知1B3,2C4,两式相加即可得出结论;(2)连接AD,由(1)的结论可知F23DEF,14CABC,两式相加即可得出结论【详解】(1)如图1,连接AO并延长,是的外角,.;是的外角,;+,得,.(2)如图2,连接AD.由(1),得;+得:,.【考点】本题考查的是三角形外角的性质,
16、根据题意作出辅助线,构造出三角形是解答此题的关键3、 (1)2c6(2)3.5【解析】【分析】(1)根据三角形任意两边之和大于第三边得出3c-2c,任意两边之差小于第三边得出|2c-6|c,列不等式组求解即可;(2)由ABC的周长为12,a+b=3c-2,4c-2=12,解方程得出答案即可(1)a,b,c分别为ABC的三边,a+b=3c-2,a-b=2c-6, ,解得:2c6故c的取值范围为2c6;(2)ABC的周长为12,a+b=3c-2,a+b+c=4c-2=12,解得c=3.5故c的值是3.5【考点】此题考查三角形的三边关系,利用三角形任意两边之和大于第三边,任意两边之差小于第三边,建立
17、不等式解决问题4、 (1)AEF72(2)见解析【解析】【分析】(1)由ADBC得ABD+BAD90,再根据等角的余角相等得ABDCAD36, 再结合角平分线的性质进一步可求得AEF的度数;(2)由角平分线的定义可得ABECBE,再由等角的余角相等进一步证明即可(1)ADBC,ABD+BAD90,BAC90,BAD+CAD90,ABDCAD36,BE平分ABC,ABEABC18, AEF90ABE72;(2)BE平分ABC,ABECBE,ABE+AEF90,CBE+BFD90,AEFBFD,AFEBFD,AEFAFE【考点】本题考查角平分线的定义,同角(等角)的余角相等,直角三角形两锐角互余等,解题关键是分清各角之间的关系5、102【解析】【分析】由三角形内角和可得BAC=80,然后由角平分线的定义可得,然后再根据三角形内角和可求解【详解】解:在中,(三角形内角和定理),(已知),(等式的性质)AD平分(已知),(角平分线的定义)在中,(三角形内角和定理)(已知),(已证),(等式的性质)【考点】本题主要考查角平分线的定义及三角形内角和,熟练掌握角平分线的定义及三角形内角和是解题的关键