1、习题课统计与回归分析课后篇巩固探究1.登山族为了了解某山高与气温之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x/181310-1山高y/km24343864由表中数据,得到线性回归方程=-2x+R),由此请估计出山高为72 km处气温的度数为()A.-10B.-8C.-4D.-6解析:由题意可得=10,=40,所以+2=40+210=60.所以=-2x+60,当=72时,有-2x+60=72,解得x=-6,故选D.答案:D2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中
2、位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差解析:甲的平均数是=6,中位数是6,极差是4,方差是=2;乙的平均数是=6,中位数是5,极差是4,方差是,故选C.答案:C3.某纺织集团为了减轻生产成本持续走高的压力,计划提高某种产品的价格,为此销售部在10月1日至10月5日连续五天对某个大型批发市场中该产品一天的价格及其销售量进行了调查,其中该产品的价格x(单位:元)与销售量y(单位:万件)之间的数据如下表所示:日期10月1日10月2日10月3日10月4日10月5日x99.51010.511y1110865已知销售量y与价格x之间具有线性相关关系,其回归直线方程为=
3、-3.2x+,若该集团提高价格后该批发市场的日销售量为7.36万件,则该产品的价格约为()A.14.2元B.10.8元C.14.8元D.10.2元解析:依题意得=10,=8.因为线性回归直线必过样本点的中心(),所以8=-3.210+,解得=40.所以回归直线方程为=-3.2x+40.令y=7.36,则7.36=-3.2x+40,解得x=10.2.所以该产品的价格约为10.2元.故选D.答案:D4.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与且只参与其中一项,各年级参与比赛的人数(单位:人)情况如下表:高一年级高二年级高三年级跑步abc
4、登山xyz其中abc=235,全校参与登山的人数占总人数的.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取人.解析:由题意可知,样本中参与跑步的人数为200=120,所以从高二年级参与跑步的学生中应抽取的人数为120=36.答案:365.(2016全国乙高考)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零
5、件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(1)若n=19,求y与x的函数解析式;(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?解:(1)当x19时,y=3 800;当x19时,y=3 800+500(x-19)=500x-5 700.所以
6、y与x的函数解析式为y=(xN).(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为(3 80070+4 30020+4 80010)=4 000.若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为
7、(4 00090+4 50010)=4 050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.6.导学号38094033(2016四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照0,0.5),0.5,1),4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.解:(1)由频率分布直方图,可知:月均用水量在0,0.5)的频率为0.080
8、.5=0.04.同理,在0.5,1),1.5,2),2,2.5),3,3.5),3.5,4),4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5a+0.5a,解得a=0.30.(2)由(1),100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 0000.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.730.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.480.5,所以2x2.5.由0.50(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.