1、人教版九年级数学上册第二十二章二次函数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列函数中,二次函数是()Ay4x+5Byx(2x3)Cyax2+bx+cD2、在“探索函数的系数,与图象的关
2、系”活动中,老师给出了直角坐标系中的四个点:,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为()ABCD3、已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是()A或2BC2D4、若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则下列说法错误的是()x-10123yA二次函数图像与x轴交点有两个Bx2时y随x的增大而增大C二次函数图像与x轴交点横坐标一个在10之间,另一个在23之间D对称轴为直线x=1.55、二次函数的图像如图所示,下列结论正确的是(
3、)ABCD有两个不相等的实数根6、已知二次函数的图象交轴于两点若其图象上有且只有三点满足,则的值是()A1BC2D47、二次函数的图象如图所示,对称轴是直线下列结论:;(为实数)其中结论正确的个数为()A1个B2个C3个D4个8、根据下列表格的对应值:x6.176.186.196.20ax2bxc0.020.010.010.04判断方程ax2bxc0(a0,a,b,c为常数)一个解x的取值范围是()A6x6.17B6.17x6.18C6.18x6.19D6.19x6.209、由二次函数,可知()A其图象的开口向下B其图象的对称轴为直线x=-3C其最小值为1D当x3时,y随x的增大而增大10、抛
4、物线y=(x2)21可以由抛物线y=x2平移而得到,下列平移正确的是()A先向左平移2个单位长度,然后向上平移1个单位长度B先向左平移2个单位长度,然后向下平移1个单位长度C先向右平移2个单位长度,然后向上平移1个单位长度D先向右平移2个单位长度,然后向下平移1个单位长度第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知函数y(2k)x2+kx+1是二次函数,则k满足_2、抛物线图象与轴无交点,则的取值范围为;3、将抛物线沿直线方向移动个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是_4、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交
5、点为顶点的三角形称为这条拋物线的“特征三角形”已知的“特征三角形”是等腰直角三角形,那么的值为_5、如图,抛物线与直线的两个交点坐标分别为,则关于的方程的解为_三、解答题(5小题,每小题10分,共计50分)1、某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?2、如图,抛物线ya(x2)2+3(a为常数且a0)与y轴交于点A(0,
6、)(1)求该抛物线的解析式;(2)若直线ykx(k0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x2210时,求k的值;(3)当4xm时,y有最大值,求m的值3、根据下列条件,求二次函数的解析式(1)图象经过(0,1),(1,2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);4、甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车另外,公司为每辆租出的汽车支付月维护费200元乙公司经理:我公司每辆汽车月租费35
7、00元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元说明:汽车数量为整数;月利润=月租车费-月维护费;两公司月利润差=月利润较高公司的利润-月利润较低公司的利润在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_元;当每个公司租出的汽车为_辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围5、端午节是我国入选世
8、界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润-参考答案-一、单选题1、B【解析】【分析】根据二次函数的定义判断即可【详解】A、y4x+5是一次函数,故选项A不合题意;B、yx(2x3)是二次函数,故选项B符合题意;C、当a0时,yax2
9、+bx+c不是二次函数,故选项C不合题意;D、不是二次函数,故选项D不合题意故选:B【考点】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键2、A【解析】【分析】分四种情况讨论,利用待定系数法,求过,中的三个点的二次函数解析式,继而解题【详解】解:设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;最大为,故选:A【考点】本题考查待定系数法求二次函数的解析式,是基础考点,难度较易,掌握相关知识是解题关键3、B【解析】【分析】根据二次函数图
10、象左加右减,上加下减的平移规律进行解答即可【详解】解:函数向右平移3个单位,得:;再向上平移1个单位,得:+1,得到的抛物线正好经过坐标原点+1即解得:或抛物线的对称轴在轴右侧00故选:B【考点】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减4、D【解析】【分析】根据x=1时的函数值最小判断出抛物线的开口方向; 根据函数的对称性可知当x=2时的函数值与x=0时的函数值相同, 并求出对称轴直线方程可得答案.【详解】A、由图表数据可知x=1时, y的值最小, 所以抛物线开口向上. 所以该抛物线与x轴有两个交点.故本选项正确;B、根据图表知, 当x2时y随x的增大而增大.故
11、本选项正确;C、抛物线的开口方向向上, 抛物线与y轴的交点坐标是(0,),对称轴是x=1,所以二次函数图象与x轴交点横坐标一个在-10之间, 另一个在23之间. 故本选项正确;D、因为x=0和x=2 时的函数值相等,则抛物线的对称轴为直线x=1. 故本选项错误;故选:D.【考点】本题主要考查二次函数性质与二次函数的最值.5、C【解析】【分析】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0;由对称轴为x=1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c0,结合b=-2a可得 3a+c0;观察图象可知抛物
12、线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0,故A选项错误;对称轴x=1,b=-2a,即2a+b=0,故B选项错误;当x=-1时, y=a-b+c0,又b=-2a, 3a+c0,故C选项正确;抛物线的顶点为(1,3),的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,故选C.【考点】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0)的图象,当a0,开口向上,函数有最小值,a0,开口向下,函数有最大
13、值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c0,抛物线与y轴的交点在x轴的上方;当=b2-4ac0,抛物线与x轴有两个交点6、C【解析】【分析】由题意易得点的纵坐标相等,进而可得其中有一个点是抛物线的顶点,然后问题可求解【详解】解:假设点A在点B的左侧,二次函数的图象交轴于两点,令时,则有,解得:,图象上有且只有三点满足,点的纵坐标的绝对值相等,如图所示:,点,;故选C【考点】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键7、C【解析】【分析】由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得
14、出,选项错误;把代入中得,所以正确;由时对应的函数值,可得出,得到,由,得到,选项正确;由对称轴为直线,即时,有最小值,可得结论,即可得到正确【详解】解:抛物线开口向上,抛物线的对称轴在轴右侧,抛物线与轴交于负半轴,错误;当时,把代入中得,所以正确;当时,即,所以正确;抛物线的对称轴为直线,时,函数的最小值为,即,所以正确故选C【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右常数项决定抛物线与轴交点:抛物线与轴交于抛物线与轴交
15、点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点8、C【解析】【分析】根据在6.18和6.19之间有一个值能使ax2+bx+c的值为0,于是可判断方程ax2+bx+c=0一个解x的范围【详解】解:由 ,得 时 随 的增大而增大,得 时, ,时, ,的一个解x的取值范围是 ,故选:C【考点】本题考查了估算一元二次方程的近似解,解答此题的关键是利用函数的增减性9、C【解析】【分析】根据二次函数的性质,直接根据的值得出开口方向,再利用顶点坐标的对称轴和增减性,分别分析即可【详解】解:由二次函数,可知:,其图象的开口向上,故此选项错误;其图象的对称轴为直线
16、,故此选项错误;其最小值为1,故此选项正确;当时,随的增大而减小,故此选项错误故选:【考点】此题主要考查了二次函数的性质,同学们应根据题意熟练地应用二次函数性质,这是中考中考查重点知识10、D【解析】【详解】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究详解:抛物线y=x2顶点为(0,0),抛物线y=(x2)21的顶点为(2,1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x2)21的图象故选D点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向二、填空题1、k2【解析】【分析】利用二次函数定义可得2k0,再
17、解不等式即可【详解】解:由题意得:2k0,解得:k2,故答案为:k2【考点】本题主要考查了二次函数的定义,准确分析计算是解题的关键2、【解析】【分析】根据题意和题目中的函数解析式,可以得到顶点的纵坐标小于0,然后代入数据计算即可【详解】解:抛物线图象与轴无交点,该抛物线开口向下,且,即: ,解之得:,故答案为:【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,明确题意,利用二次函数的性质解答是解答本题的关键3、【解析】【分析】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),再求出平移后的顶点坐标,最后求出平移后的函数关系式【详解】设抛物线沿直线方向移动个单位长度后顶点坐标为
18、(t,3t),解得:t=1或t=-1(舍去),平移后的顶点坐标为(1,3),移动后抛物线的解析式是故答案为:【考点】本题考查二次函数的图象变换及一次函数的图像,解题的关键是正确理解图象变换的条件,本题属于基础题型4、2【解析】【分析】首先求出的顶点坐标和与x轴两个交点坐标,然后根据“特征三角形”是等腰直角三角形列方程求解即可【详解】解:,代入得:抛物线的顶点坐标为当时,即,解得:,抛物线与x轴两个交点坐标为和的“特征三角形”是等腰直角三角形,即解得:故答案为:2【考点】此题考查了二次函数与x轴的交点问题,等腰直角三角形的性质,解题的关键是求出的顶点坐标和与x轴两个交点坐标5、,【解析】【分析】
19、根据二次函数图象与一次函数图象的交点问题得到方程组的解为,于是易得关于x的方程ax2-bx-c=0的解【详解】解:抛物线与直线的两个交点坐标分别为,方程组的解为,即关于的方程的解为,故答案为x1=-2,x2=1【考点】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a0)的顶点坐标是,对称轴直线x=-也考查了二次函数图象与一次函数图象的交点问题三、解答题1、(1)450千克;(2)当月销售利润为元时,每千克水果售价为元或元;(3)当该优质水果每千克售价为元时,获得的月利润最大【解析】【分析】(1)根据销售量的规律:500减去减少的数量即可求出答案;(2)设每千克水果售价为元,根据题意列
20、方程解答即可;(3)设月销售利润为元,每千克水果售价为元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可【详解】解:当售价为元/千克时,每月销售量为千克设每千克水果售价为元,由题意,得即整理,得配方,得解得当月销售利润为元时,每千克水果售价为元或元;设月销售利润为元,每千克水果售价为元,由题意,得即配方,得,当时,有最大值,当该优质水果每千克售价为元时,获得的月利润最大【考点】此题考查一元二次方程的实际应用,顶点式二次函数的性质,正确理解题意,根据题意对应的列方程或是函数关系式进行解答,并正确计算2、(1);(2);(3)【解析】【分析】(1)把代入抛物线的解析式,解方程求解即可;
21、 (2)联立两个函数的解析式,消去 得:再利用根与系数的关系与可得关于的方程,解方程可得答案;(3)先求解抛物线的对称轴方程,分三种情况讨论,当 结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.【详解】解:(1)把代入中, 抛物线的解析式为: (2)联立一次函数与抛物线的解析式得: 整理得: x1+x2=4-3k,x1x2=-3,x12+x22=(4-3k)2+6=10,解得: (3)函数的对称轴为直线x=2,当m2时,当x=m时,y有最大值,=-(m-2)2+3,解得m=,m=-,当m2时,当x=2时,y有最大值,=3,m=,综上所述,m的值为-或【考点】本题考查的是利用待定系数
22、法求解抛物线的解析式,抛物线与轴的交点坐标,一元二次方程根与系数的关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.3、(1)y4x27x+1;(2)y2(x2)2+3【解析】【分析】(1)先设出抛物线的解析式为yax2+bx+c,再将点(0,1),(1,2),(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式ya(x2)23,然后把(3,1)代入求出a的值即可【详解】解:(1)设出抛物线的解析式为yax2+bx+c,将(0,1),(1,2),(2,3)代入解析式,得:,解得:,抛物线解析式为:y4x27x+1;(2)设抛物线解析式为y
23、a(x2)2+3,把(3,1)代入得:a(32)2+31,解得a2,所以抛物线解析式为y2(x2)2+3【考点】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解4、(1)48000,37;(2)33150元;(3)【解析】【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的
24、月利润分别为y甲,y乙,月利润差为y,同(1)可得y甲和y乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y关于x的表达式,根据二次函数的性质,结合x的范围求出最值,再比较即可;(3)根据题意得到利润差为,得到对称轴,再根据两公司租出的汽车均为17辆,结合x为整数可得关于a的不等式,即可求出a的范围【详解】解:(1)=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x辆,由题意可得:,解得:x=37或x=-1(舍),当每个公司租出的汽车为37辆时,两公司的月利润相等;(2)设两公司的月利润分别为y甲,y乙,月利润差为
25、y,则y甲=,y乙=,当甲公司的利润大于乙公司时,0x37,y=y甲-y乙=,当x=18时,利润差最大,且为18050元;当乙公司的利润大于甲公司时,37x50,y=y乙-y甲=,对称轴为直线x=18,当x=50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;(3)捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为=,对称轴为直线x=,x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,解得:【考点】本题考查了二次函数的实际应用,二次函数的图像和性质,解题时要读懂题意,列出二次函数关系式,尤其(3)中要根据x为整数得到a的不等式5、(1)猪肉粽每盒
26、进价40元,豆沙粽每盒进价30元;(2),最大利润为1750元【解析】【分析】(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价元,根据某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同列方程计算即可;(2)根据题意当时,每天可售100盒,猪肉粽每盒售x元时,每天可售盒,列出二次函数关系式,根据二次函数的性质计算最大值即可【详解】解:(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价元则解得:,经检验是方程的解猪肉粽每盒进价40元,豆沙粽每盒进价30元答:猪肉粽每盒进价40元,豆沙粽每盒进价30元(2)由题意得,当时,每天可售100盒当猪肉粽每盒售x元时,每天可售盒每盒的利润为(),配方得:当时,y取最大值为1750元,最大利润为1750元答:y关于x的函数解析式为,且最大利润为1750元【考点】本题主要考查分式方程的实际应用以及二次函数的实际应用,根据题意列出相应的函数解析式是解决本题的关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有