收藏 分享(赏)

2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx

上传人:a**** 文档编号:635368 上传时间:2025-12-12 格式:DOCX 页数:31 大小:718.09KB
下载 相关 举报
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第1页
第1页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第2页
第2页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第3页
第3页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第4页
第4页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第5页
第5页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第6页
第6页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第7页
第7页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第8页
第8页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第9页
第9页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第10页
第10页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第11页
第11页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第12页
第12页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第13页
第13页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第14页
第14页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第15页
第15页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第16页
第16页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第17页
第17页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第18页
第18页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第19页
第19页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第20页
第20页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第21页
第21页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第22页
第22页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第23页
第23页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第24页
第24页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第25页
第25页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第26页
第26页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第27页
第27页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第28页
第28页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第29页
第29页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第30页
第30页 / 共31页
2022-2023学年人教版九年级数学上册第二十三章旋转专项测评试题(解析版).docx_第31页
第31页 / 共31页
亲,该文档总共31页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十三章旋转专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中, 将绕点逆时针旋转得到,其中点与 点是对应点,且点在同一条直线上;则的长为()ABCD2、如图,将AB

2、C绕点B顺时针旋转50得DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()AAB=DBBCBD=80CABD=EDABCDBE3、在方格纸中,选择标有序号中的一个小正方形涂黑,与图中阴影部分构成中心对称图形该小正方形的序号是()ABCD4、二次函数的图象的顶点坐标是,且图象与轴交于点将二次函数的图象以原点为旋转中心顺时针旋转180,则旋转后得到的函数解析式为()ABCD5、如图,在坐标系中放置一菱形 OABC,已知ABC=60,点 B 在 y 轴上,OA=1,先将菱形 OABC 沿 x 轴的正方向无滑动翻转,每次翻转 60,连续翻转2019次,点 B 的落点依次为

3、 B1,B2,B3,则 B2 019 的坐标为()A(1010,0)B(13105, )C(1345, )D(1346,0)6、如图,菱形对角线交点与坐标原点重合,点,则点的坐标为()ABCD7、小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转角度不超过180)若两块三角板有一边平行,则三角板DEF旋转的度数可能是()A15或45B15或45或90C45或90或135D15或45或90或1358、在下列面点烘焙模具中,其图案是中心对称图形的是()ABCD9、如图,RtABC中,C=90,A=30,AB=20,点P是AC边上的一个动点,将线

4、段BP绕点B顺时针旋转60得到线段BQ,连接CQ则在点P运动过程中,线段CQ的最小值为()A4B5C10D510、将矩形绕点顺时针旋转,得到矩形当时,下列针对值的说法正确的是()A或B或CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知:,以AB为边作正方形ABCD,使P、D两点落在直线AB的两侧当时,则PD的长为_2、如图,在ABC中,CAB65,在同一平面内,将ABC绕点A逆时针旋转到的位置,使得,则等于_3、如图,正方形ABCD的边长为6,点E在边CD上以点A为中心,把ADE顺时针旋转90至ABF的位置若DE2,则FE_4、将边长为的正方形绕点按顺时针

5、方向旋转到的位置(如图),使得点落在对角线上,与相交于点,则_.(结果保留根号)5、如图,在平面直角坐标系中,等腰直角三角形OAB,A90,点O为坐标原点,点B在x轴上,点A的坐标是(1,1)若将OAB绕点O顺时针方向依次旋转45后得到OA1B1,OA2B2,OA3B3,可得A1(,0),A2(1,1),A3(0,),则A2021的坐标是_三、解答题(5小题,每小题10分,共计50分)1、图1、图2分别是77的正方形网格,网格中每个小正方形的边长均为1,点A、B在小正方形的顶点上,仅用无刻度直尺完成下列作图(1)在图1中确定点C、D(点C、D在小正方形的顶点上),并画出以AB为对角线的四边形,

6、使其是中心对称图形,但不是轴对称图形,且面积为15;(2)在图2中确定点E、F(点E、F在小正方形的顶点上),并画出以AB为对角线的四边形,使其既是轴对称图形,又是中心对称图形,且面积为152、如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,的三个顶点分别为,(1)画出关于原点对称的,并写出点的坐标;(2)画出绕点顺时针旋转后得到的,并写出点的坐标3、如图,AOB中,OA=OB=6,将AOB绕点O逆时针旋转得到CODOC与AB交于点G,CD分别交OB、AB于点E、F(1)A与D的数量关系是:A_D;(2)求证:AOGDOE;(3)当A,O,D三点共线时,恰好OBCD

7、,求此时CD的长4、如图1,直线上有一点O,过点O在直线上方作射线将一直角三角板的直角顶点放在点O处,一条直角边在射线上,另一边在直线上方将直角三角板绕着点O按每秒的速度逆时针旋转一周,设旋转时间为t秒(1)当直角三角板旋转到如图2的位置时,恰好平分,此时,与之间有何数量关系?并说明理由;(2)在旋转的过程中,若射线的位置保持不变,且当边与射线相交时(如图3),则的值为_;当边所在的直线与平行时,求t的值5、如图,ABC中,ABAC1,BAC45,AEF是由ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BECF ;(2)当四边形ACDE为菱形时,求BD的长-参考答案

8、-一、单选题1、A【解析】【分析】根据旋转的性质说明ACC是等腰直角三角形,且CAC=90,理由勾股定理求出CC值,最后利用BC=CC-CB即可【详解】解:根据旋转的性质可知AC=AC,ACB=ACB=45,BC=BC=1,ACC是等腰直角三角形,且CAC=90,CC=4,BC=4-1=3故选:A【考点】本题主要考查了旋转的性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量2、C【解析】【分析】利用旋转的性质得ABCDBE ,BA=BD,BC=BE,ABD=CBE=50,C=E,再由A、B、E三点共线,由平角定义求出CBD=80,由三角形外角性质判断出ABDE【详解】

9、解:ABC绕点B顺时针旋转50得DBE, AB=DB,BC=BE,ABD=CBE=50,ABCDBE ,故选项A、D一定成立;点C的对应点E恰好落在AB的延长线上,ABD+CBE+CBD =180,.CBD=180-50-50=80,故选项B一定成立;又 ABD=E+BDE,ABDE,故选项C错误,故选C【考点】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等3、B【解析】【分析】直接利用中心对称图形的性质得出答案即可【详解】解:如图,把标有序号的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,故选B【考点】本题

10、考查了利用旋转设计图案和中心对称图形的定义,要知道,一个图形绕端点旋转180所形成的图形叫中心对称图形4、C【解析】【分析】设将二次函数的图象以原点为旋转中心顺时针旋转180后为:;根据旋转的性质,得的图象的顶点坐标是,且图象与轴交于点,得,再通过列方程并求解,即可得到表达式并转换为顶点式,即可得到答案【详解】设将二次函数的图象以原点为旋转中心顺时针旋转180后为:二次函数的图象的顶点坐标是,且图象与轴交于点的图象的顶点坐标是,且图象与轴交于点 , 故选:C【考点】本题考查了二次函数、旋转的知识;解题的关键是熟练掌握二次函数图像及解析式、旋转的性质,从而完成求解5、D【解析】【分析】连接AC,

11、根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4由于2019=3366+3,因此点向右平移(即)即可到达点,根据点的坐标就可求出点的坐标【详解】连接AC,如图所示四边形OABC是菱形,OA=AB=BC=OCABC=60,ABC是等边三角形AC=ABAC=OAOA=1,AC=1由图可知:每翻转6次,图形向右平移42019=3366+3,点B3向右平移1344(即3364)到点B2019B3的坐标为(2,0),B2019的坐标为(1346,0),故选:D【考点】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力

12、发现“每翻转6次,图形向右平移4”是解决本题的关键6、B【解析】【分析】根据菱形的中心对称性,A、C坐标关于原点对称,利用横反纵也反的口诀求解即可【详解】菱形是中心对称图形,且对称中心为原点,A、C坐标关于原点对称,C的坐标为,故选C【考点】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键7、D【解析】【分析】分四种情况讨论,由平行线的性质和旋转的性质可求解【详解】解:设旋转的度数为,若DEAB,则E=ABE=90,=90-30-45=15,若BEAC,则ABE=180-A=120,=120-30-45=45,若BDAC,则ACB=CBD=90,

13、=90,当点C,点B,点E共线时,ACB=DEB=90,ACDE,=180-45=135,综上三角板DEF旋转的度数可能是15或45或90或135故选:D【考点】本题考查了旋转的性质,平行线的性质,利用分类讨论思想解决问题是本题的关键8、D【解析】【分析】根据中心对称图形的性质得出图形旋转180,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可【详解】解:A.不是中心对称图形,不符合题意;B.不是中心对称图形,不符合题意;C.不是中心对称图形,不符合题意;D.是中心对称图形,符合题意;故选:D【考点】此题主要考查了中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键9、

14、D【解析】【分析】将RtABC绕点B顺时针旋转60得到,再设线段的中点为M,并连接CM根据线段BP的旋转方式确定点Q在线段上运动,再根据垂线段最短确定当Q与点M重合时,CQ取得最小值为CM根据C=90,A=30,AB=20求出BC的长度,再根据旋转的性质求出和的长度,根据线段的和差关系确定点C是线段的中点,进而确定CM是的中位线,再根据三角形中位线定理即可求出CM的长度【详解】解:如下图所示,将RtABC绕点B顺时针旋转60得到,再设线段的中点为M,并连接CM点P是AC边上的一个动点,线段BP绕点B顺时针旋转60得到线段BQ,点Q在线段上运动当,即点Q与点M重合时,线段CQ取得最小值为CMC=

15、90,A=30,AB=20,BC=10RtABC绕点B顺时针旋转60得到,=BC=10,点C是线段中点点M是线段的中点,CM是的中位线故选:D【考点】本题考查旋转的性质,直角三角形30所对的直角边是斜边的一半,垂线段最短,三角形中位线定理,综合应用这些知识点是解题关键10、A【解析】【分析】当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据DAG=60,即可得到旋转角的度数【详解】如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:当点G在AD右侧时,取BC的中点H,连接GH交AD于M,GC=GB,GHBC,四边形ABHM是矩形,AM=BH=,GM垂直平分AD,GD=G

16、A=DA,ADG是等边三角形,DAG=60,旋转角=60;当点G在AD左侧时,同理可得ADG是等边三角形,DAG=60,旋转角=360-60=300,故选:A【考点】本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角二、填空题1、【解析】【分析】由于ADAB,DAB90,则把APD绕点A顺时针旋转90得到AFB,AD与AB重合,PA旋转到AF的位置,根据旋转的性质得到APAF,PAF90,PDFB,则APF为等腰直角三角形,得到APF45,即有BPFAPB+APF45+4590,然后在RtFBP中,根据勾股定理可计算出FB的长,即可得到

17、PD的长【详解】解:ADAB,DAB90,把APD绕点A顺时针旋转90得到AFB,AD与AB重合,PA旋转到FA的位置,如图,APAF,PAF90,PDFB,APF为等腰直角三角形,APF45, ,BPFAPB+APF45+4590,在RtFBP中,PB4,由勾股定理得,故答案为:【考点】本题考查了正方形的性质,旋转的性质,等腰直角三角形的判定和性质以及勾股定理正确的作出辅助线是解题关键2、50【解析】【分析】由平行线的性质可求得的度数,然后由旋转的性质得到,然后依据三角形的性质可知的度数,依据三角形的内角和定理可求得的度数,从而得到的度数.【详解】解:由旋转的性质可知:故答案为:.3、【解析

18、】【分析】由旋转的性质可得BF=DE=2,D=ABF=90,在直角EFC中,由勾股定理可求解【详解】解:把ADE顺时针旋转90得ABF,BF=DE=2,D=ABF=90,ABC+ABF=180,点F,点B,点C共线,在直角EFC中,EC=6-2=4,CF=BC+BF=8根据勾股定理得:EF=,故答案为:【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键4、【解析】【分析】先根据正方形的性质得到CD=1,CDA=90,再利用旋转的性质得CF=,根据正方形的性质得CFE=45,则可判断DFH为等腰直角三角形,从而计算CF-CD即可【详解】四边形ABCD为正方

19、形,CD=1,CDA=90,边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,CF=,CFDE=45,DFH为等腰直角三角形,DH=DF=CF-CD=-1故答案为-1【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了正方形的性质5、【解析】【分析】根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环,再由 ,即可求解【详解】解:根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环, ,A2021的坐标是 故答案

20、为:【考点】本题主要考查了图形的旋转,明确题意,准确得到规律是解题的关键三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)画一个底为3,高为5的平行四边形即可;(2)画一个对角线分别为3,5的菱形AEBF即可(1)解:如图1中,平行四边形ACBD即为所求(2)解:如图2中,菱形AEBF即为所求【考点】本题考查作图-旋转变换,轴对称变换,特殊四边形等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题2、(1)图见解析;(2)图见解析;【解析】【分析】(1)画出关于原点对称的,写出的坐标即可;(2)画出绕点顺时针旋转后得到的,写出点的坐标即可【详解】解:(1)如图即为所作,;(

21、2)如图:即为所作,【考点】本题考查了旋转作图,根据题意画出图形是解本题的关键3、 (1)=(2)证明见解析(3),详见解析【解析】【分析】(1)根据旋转性质及等腰三角形性质即可得答案;(2)由旋转性质知AOB=DOC,可证得AOG=DOE,结合OA=OB及(1)中结论,得证;(3)分两种情况讨论,设A=x,先利用三角形内角和求出x的值,再借助勾股定理求出CD的长度即可(1)解:由旋转知,A=C,B=D,OA=OB,OC=OD,A=B=C=DA=D,故答案为:=(2)证明:由旋转知,OA=OC,OB=OD,AOB=COD,AOBBOC=CODBOC,即AOG=DOE,OA=OB,OA=OB=O

22、C=OD,又A=D,AOGDOE(3)解:分两种情况讨论,如图所示,设A=B=C=D=x,则DOB=2x,OBCD,OED=90,x+2x=90,解得:x=30,即D=30,在RtODE中,OE=3,由勾股定理得:DE=,OC=OD,OECD,CD=2DE=当D与A重合时,如图所示,同理,得:CD=综上所述,当A,O,D三点共线时,OBCD,此时CD的长为【考点】本题考查了旋转的性质、等腰三角形性质、全等三角形的判定、勾股定理等知识点,解题关键是利用旋转性质得到边、角的关系4、 (1),理由见解析(2);或【解析】【分析】(1)由,可知,由平分,可知,进而可证;(2)由,可知,进而得,由此可求

23、出结果;由以及,结合题意可分两种情况:当在直线上方时,或当在直线下方时,将两种情况分别进行讨论求解即可(1),理由如下:,平分,;(2);,的值为,(I)如图3-1,当在直线上方时, , 直角三角板绕点O按每秒的速度旋转,;(II)解法一:如图3-2,当在直线下方时, 直角三角板绕点O旋转的角度为, 直角三角板绕点O按每秒的速度逆时针旋转,解法二:如图3-3,在()的基础上,继续将直角三角板绕点O按每秒的速度逆时针旋转,得到直角三角板,此时,直角三角板绕点O旋转的角度为,直角三角板绕点O按每秒的速度逆时针旋转,综合()()得:或【考点】本题考查旋转问题,角平分线的性质,以及角的互相转换,能够掌

24、握数形结合思想是解决本题的关键5、(1)证明见解析(2)-1 【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,EAF=BAC,则EAF+BAF=BAC+BAF,即EAB=FAC,利用AB=AC可得AE=AF,得出ACFABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,ACDE,根据等腰三角形的性质得AEB=ABE,根据平行线得性质得ABE=BAC=45,所以AEB=ABE=45,于是可判断ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BEDE求解【详解】(1)AEF是由ABC绕点A按顺时针方向旋转得到的,AE=AB,AF=AC,EAF=BAC,EAF+BAF=BAC+BAF,即EAB=FAC,在ACF和ABE中,ACFABEBE=CF.(2)四边形ACDE为菱形,AB=AC=1,DE=AE=AC=AB=1,ACDE,AEB=ABE,ABE=BAC=45,AEB=ABE=45,ABE为等腰直角三角形,BE=AC=,BD=BEDE=考点:1旋转的性质;2勾股定理;3菱形的性质

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1