1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中模拟考试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、关于的一元二次方程的两根应为()AB,CD2、下列一元二次方程中,有
2、两个不相等实数根的是( )ABx2+2x+4=0Cx2-x+2=0Dx2-2x=03、已知关于x的一元二次方程标有两个不相等的实数根,则实数k的取值范围是()ABC且D4、将一元二次方程化成(a,b为常数)的形式,则a,b的值分别是()A,21B,11C4,21D,695、下列方程:;是一元二次方程的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图,抛物线y=ax2+bx+c的对称轴是x=1且过点(,0),则下列结论中正确的结论是()Aabc0Ba2b+4c=0C25a10b+4c=0D3b+2c0Eabm(amb)2、以图(以点O为圆心,半径为1的半圆)作为“基本图形”,分
3、别经历如下变换能得到图的有()A只要向右平移1个单位B先以直线为对称轴进行翻折,再向右平移1个单位C先绕着点O旋转,再向右平移1个单位D绕着的中点旋转即可 线 封 密 内 号学级年名姓 线 封 密 外 3、如图所示,在一边靠墙(墙足够长)空地上,修建一个面积为672m2的矩形临时仓库,仓库一边靠墙,另三边用总长为76米的栅栏围成,若设栅栏AB的长为xm,则下列各方程中,不符合题意的是()Ax(76x)672Bx(762x)672Cx(762x)672Dx(76x)6724、已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点的坐标分别为(1,0),(3,0)则下列结论中正确的有(
4、)Aabc0Bb24ac0C当x1x20时,y1y2D当1x3时,y05、如图,已知顶点为(3,6)的抛物线经过点(1,4),则下列结论中正确的是()ABC关于x的一元二次方程的两根分别为和D若点(2,m),(5,n)在抛物线上,则第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、将抛物线向上平移()个单位长度,k,平移后的抛物线与双曲线y(x0)交于点P(p,q),M(1,n),则下列结论正确的是_(写出所有正确结论的序号) 0p1; 1p1; qn; q2kk2、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么
5、点A的坐标是_3、已知二次函数,当x_时,y取得最小值4、关于的方程,k=_时,方程有实数根5、已知(m1)3x50是一元二次方程,则m_四、解答题(5小题,每小题8分,共计40分)1、用适当的方法解方程:(1)(1-x)2-2(x-1)-350;(2)x2+4x-202、用适当的方法解下列方程:(1)(2) 线 封 密 内 号学级年名姓 线 封 密 外 3、在平面直角坐标系中,抛物线交x轴于点,过点B的直线交抛物线于点C(1)求该抛物线的函数表达式;(2) 若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求面积的最大值;(3)若点M在抛物线上,将线段OM绕点O旋转90,得到线段
6、ON,是否存在点M,使点N恰好落在直线BC上?若存在,请直接写出点M的坐标;若不存在,请说明理由4、解下列方程(1)x22x0;(2)2x23x105、如图,平面直角坐标系中,ABC的三个顶点的坐标分别为A(1,2),B(2,4),C(4,1)(1)在平面直角坐标系中画出与ABC关于点P(1,0)成中心对称的ABC,并分别写出点A,B,C的坐标;(2)如果点M(a,b)是ABC边上(不与A,B,C重合)任意一点,请写出在ABC上与点M对应的点M的坐标-参考答案-一、单选题1、B【解析】【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程即可【详解】x23ax+a2=0,=(3a
7、)24a2=a2,x=.所以x1=a,x2=a.故答案选B. 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了解一元二次方程,解题的关键是根据公式法解一元二次方程.2、D【解析】【分析】逐一分析四个选项中方程的根的判别式的符号,由此即可得出结论【详解】A.此方程判别式 ,方程有两个相等的实数根,不符合题意; B.此方程判别式 方程没有实数根,不符合题意;C.此方程判别式 ,方程没有实数根,不符合题意;D .此方程判别式 ,方程有两个不相等的实数根,符合题意;故答案为: D.【考点】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等
8、于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根3、C【解析】【分析】由一元二次方程定义得出二次项系数k0;由方程有两个不相等的实数根,得出“0”,解这两个不等式即可得到k的取值范围【详解】解:由题可得:,解得:且;故选:C【考点】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求4、A【解析】【分析】根据配方法步骤解题即可【详解】解:移项得,配方得,即,a=-4,b=21故选:A【考点】本题考查了配方法解一元二次方程,解题关键
9、是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方5、D 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据一元二次方程的定义进行判断【详解】该方程符合一元二次方程的定义;该方程中含有2个未知数,不是一元二次方程;该方程含有分式,它不是一元二次方程;该方程符合一元二次方程的定义;该方程符合一元二次方程的定义综上,一元二次方程故选:D【考点】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2二、多选题1、ACE【解析】【分析】抛物线开口向下,a0,对称轴为,0,抛物线与y轴交
10、于y轴正半轴,c0,可判断选项A;抛物线过点(,0),可判断选项B;抛物线与x轴另一交点为(-),代入可得,可判断选项C;由,可得,可判断选项D;a0,抛物线开口向下,抛物线有最大值,当x=-1时,y最大=,任意以点(-m,y)在抛物线上,y最大,即,可判断选项【详解】解:抛物线y=ax2+bx+c的对称轴是x=1且过点(,0),抛物线与x轴另一交点为(-),抛物线开口向下,a0,对称轴为,0,抛物线与y轴交于y轴正半轴,c0,a、b、c中两负一正,abc0,故选项A正确;抛物线过点(,0),即,故选项B不正确;抛物线与x轴另一交点为(-), 线 封 密 内 号学级年名姓 线 封 密 外 即,
11、故选项C正确;,故选项不正确;a0,抛物线开口向下,抛物线有最大值,当x=-1时,y最大=,任意以点(-m,y)在抛物线上,y最大,即,故选择正确;正确的结论是ACE故选择ACE【点睛】本题考查抛物线性质,确定抛物线各项系数符号,与两轴交点坐标,函数最大值,关键是利用以上信息确定代数式的符号与值,比较大小2、BCD【解析】【分析】观察两个半圆的位置关系,再确定能否通过图象变换得到,以及旋转、平移的方法【详解】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平移1个单位,或先绕着点O旋转180,再向右平移1个单位,或绕着OB的中点旋转180即可得到图(2)故选BCD【点睛】本题考查了旋
12、转、轴对称、平移的性质关键是根据变换图形的位置关系,确定变换规律3、BCD【解析】【分析】本题可根据题意分别用x表示BC或AD的长,再根据面积公式列出方程即可【详解】解:设栅栏AB的长为xm,依题意得: ,而矩形面积 ,不符合题意的方程有BCD故选:BCD【点睛】考查一元二次方程的应用,解题的关键是读懂题目,找到题目中的等量关系,列方程即可4、ABC 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】首先根据对称轴公式结合a的取值可判定出b0,根据a、b、c的正负即可判断出A的正误;抛物线与x轴有两个不同的交点,则=b2-4ac0,故B正确;根据二次函数的性质即可判断出C的正误;由
13、图象可知:当-1x3时,y0,即可判断出D的正误【详解】解:根据图象可得:抛物线开口向上,则a0抛物线与y交与负半轴,则c0,对称轴:x=-0,b0,abc0,故A正确;它与x轴的两个交点分别为(-1,0),(3,0),则=b2-4ac0,故B正确抛物线与x轴的两个交点分别为(-1,0),(3,0),对称轴是直线x=1,抛物线开口向上,当x1时,y随x的增大而减小,当x1x20时,y1y2;故C正确;由图象可知:当-1x3时,y0,故D错误;故正确的有ABC故选ABC【点睛】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口方向,当a0时,抛物线向上开口;当a0
14、时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c)5、ABC【解析】【分析】(1)由图象可知抛物线与x轴的交点个数,从而确定相应的一元二次方程根的情况即可;(2)抛物线开口方向向上,即函数有最小值,从而知道选项是否正确;(3)根据图象分析出函数的对称轴,然后分析出关于对称轴的对称点,即可知道对应的一元二次方程的两个根;(4)根据抛物线开口方向和对称轴,判断分析两点离对称轴的距离,即可得出结论【详解】解:A、根据函数对称
15、性,二次函数图象与x轴有两个交点,即对应的一元二次方程有两个不相等的实数根,此时,即,选项正确;B、抛物线开口方向向上,即函数有最小值,所以,选项正确;C、由函数图象知,对称轴为,所以点与关于对称轴对称,即关于x的一元二次方程的两根分别是和,选项正确;D、因为抛物线开口向上,对称轴为,离对称轴的距离大于离对称轴的距离,所以,所以选项错误故选:ABC【点睛】本题考查二次函数图象性质、二次函数与一元二次方程的关系,二次函数图象的对称性等相关知识点,牢记相关知识点并能灵活应用是解题的关键三、填空题 线 封 密 内 号学级年名姓 线 封 密 外 1、#【解析】【分析】先画出函数图像,判断出当时抛物线和
16、反比例函数图象上的点的纵坐标的关系,确定抛物线右支与反比例函数图象的交点个数,再利用抛物线的对称性与反比例函数的图象与性质直接判断即可【详解】解: 抛物线,该抛物线对称轴为,顶点坐标为(1,),将该抛物线向上平移()个单位长度,则顶点坐标为(1,),当时,反比例函数图象上点的坐标为(1,),如图所示,抛物线平移后的顶点纵坐标即为m,反比例函数上横坐标为1的点的纵坐标即为s,m-s=,k,抛物线的右支与反比例函数图象只有一个交点,且该交点横坐标大于1;平移后的抛物线与双曲线y(x0)交于点P(p,q),M(1,n),点M为抛物线右支与反比例函数图象的交点,点P为抛物线左支与反比例函数图象的交点,
17、由于反比例函数的图像在第一象限内y随x的增大而减小,且抛物线关于直线对称1p1;q2kk正确;故答案为:【考点】本题考查了抛物线与反比例函数的图像与性质,解题关键是弄清楚这两个交点分别位于抛物线的左支和右支上,再利用抛物线的轴对称性和反比例函数图像的增减性进行判断2、【解析】【分析】先按题目要求对A、B点进行平移,再根据原点对称的特征:横纵坐标互为相反数进行列方程,求解【详解】设,向右平移4个单位,再向下平移6个单位得到 A、B关于原点对称, 线 封 密 内 号学级年名姓 线 封 密 外 解得,故答案为:【考点】本题考查点的平移和原点对称的性质,掌握这些是解题关键3、1【解析】【分析】根据抛物
18、线的顶点坐标和开口方向即可得出答案【详解】解:,该抛物线的顶点坐标为,且开口方向向上,当时,取得最小值,故答案为:1【考点】本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法4、【解析】【分析】由于最高次项前面的系数不确定,所以进行分类讨论:当时,直接进行求解;当时,方程为一元二次方程,利用根的判别式,确定k的取值范围,最后综合即可求出满足题意的k的取值范围【详解】解:当时,方程化为:,解得:,符合题意;当时,方程有实数根,即,解得:,且;综上所述,当时,方程有实数根,故答案为:【考点】题目主要考查方程的解的情况,包括一元一次方程
19、及一元二次方程的求解,分情况讨论方程的解是解题关键5、1【解析】【分析】根据一元二次方程的定义m-10,且,解答即可【详解】(m1)3x50是一元二次方程,m-10,且, 线 封 密 内 号学级年名姓 线 封 密 外 m-10,且,故答案为:-1【考点】本题考查了一元二次方程的定义即含有一个未知数且含未知数项的次数最高是2的整式方程,熟练掌握定义是解题的关键四、解答题1、 (1)x18,x2-4(2)x1-2,x2-2【解析】【分析】(1)用分解因式的方法解答,分解因式用十字相乘法分解;(2)用配方法解答,配方前先把-2移项,而后配方,等号左右斗殴配上一次项系数一半的平方(1)原方程可变形为(
20、x-1-7)(x-1+5)0,x-80或x+40,x18,x2-4;(2)移项,得x2+4x2,配方,得x2+4x+46,即(x+2)26,两边开平方,得x+2,x1-2,x2-2【点睛】本题考查了用适当方法解一元二次方程,解决问题的关键是先考虑直接开平方法分解因式法,而后再考虑配方法或公式法2、 (1),(2),【解析】【分析】根据因式分解法解一元二次方程即可(1)解:解得,(2)解:解得,【点睛】本题考查了解一元二次方程,熟练掌握因式分解法解一元二次方程是解题的关键3、(1);(2);(3)存在,或 或或【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)将A、B两点的坐
21、标分别代入抛物线的解析式中,得关于a、b的二元一次方程组,解方程组即可求得a、b,从而可求得抛物线的函数解析式;(2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,则有,设,则可得E点坐标,从而可分别求得PE、DE,从而求得PE,解由二次函数与一次函数组成的方程组,可求得点C的坐标,进而求得PBC的面积关于m的函数,求出函数的最值即可;(3)设点M的坐标为(p,q),分别求出直线OM、ON的解析式,再求得ON与直线的交点N的坐标,根据OM=ON,即可求出p与q的值,从而求得点M的坐标【详解】(1)将点,代入中,得:解得该抛物线表达式为 (2)过点P作轴,交x轴于点D,交BC
22、于点E,作于点F,连接PB,PC,如图 设点,则点点P、E均位于直线的下方P、E两点的纵坐标均为负,点C的坐标为方程组的一个解解这个方程组,得,点B坐标为点C的横坐标为(其中)这个二次函数有最大值,且当时,的最大值为 线 封 密 内 号学级年名姓 线 封 密 外 (3)存在设M(p,q),其中,且p0, 则直线OM的解析式为:由于ONOM,则直线ON的解析式为: 解方程组 ,得, 即点N的坐标为 ,且OM=ON 即 或把代入两式中并整理,得: 或 解方程得: , (舍去)当时,;当时,;当时,故点M的坐标分别为:或或当p=0时,则q=3,即M(0,3),而,且OMOB即此时点M也满足题意 综上
23、所述,满足题意的点M的坐标为或或或【点睛】本题是二次函数的压轴题,也是中考常考题型,它考查了待定系数法求二次数解析式,二次函数的图象,求二次函数的最值,平面直角坐标系中图象旋转问题,解方程组,勾股定理等知识,运算量较大,这对学生的运算能力提出了更高的要求;求三角形面积时用到图形的割补方法,这是在平面直角坐标系中求图象面积常用的方法4、 (1)x12,x20(2)x1,x2【解析】【分析】(1)采用因式分解法即可求解;(2)直接用公式法即可求解(1)原方程左边因式分解,得:,即有:x12,x20;(2), 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了用因式分解法和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键5、(1)ABC见解析,A(3,2),B(4,4),C(6,1);(2)M(2a,b)【解析】【分析】(1)分别作出A,B,C的对应点A、B、C,然后顺次连接可得ABC,再根据所作图形写出坐标即可(2)利用中点坐标公式计算即可【详解】解:(1)ABC如图所示,A(3,2),B(4,4),C(6,1);(2)设M(m,n),则有,m2a,nb,M(2a,b)【点睛】本题考查作图中心对称,解题的关键是熟练掌握中心对称的性质,正确找出对应点位置