1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中定向练习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知抛物线P:,将抛物线P绕原点旋转180得到抛物线,当时,在抛物
2、线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是()ABCD2、正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为()ABCD3、对于函数的图象,下列说法不正确的是()A开口向下B对称轴是直线C最大值为D与轴不相交4、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转90,得到,则点的坐标为()ABCD5、如图,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为xm,则可以列出关于x的方程是()Ax(262x)=80Bx(24
3、2x)=80C(x1)(262x)=80D(x-1)(252x)=80二、多选题(5小题,每小题4分,共计20分)1、已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点的坐标分别为(1,0),(3,0)则下列结论中正确的有()Aabc0Bb24ac0C当x1x20时,y1y2D当1x3时,y0 线 封 密 内 号学级年名姓 线 封 密 外 2、下面一元二次方程的解法中,不正确的是()A(x-3)(x-5)=102,x-3=10,x-5=2,x1=13,x2=7B(2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1=,x2=C(x+2)2+4x=0,x1=2,x2
4、=-2Dx2=x两边同除以x,得x=13、以图(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图的有()A只要向右平移1个单位B先以直线为对称轴进行翻折,再向右平移1个单位C先绕着点O旋转,再向右平移1个单位D绕着的中点旋转即可4、已知关于的方程,下列判断正确的是()A当时,方程有两个正实数根B当时,方程有两个不等实根C当时,方程无解D不论为何值时,方程总有实数根5、下列方程不适合用因式方程解法解的是()Ax23x+2=0B2x2=x+4C(x1)(x+2)=70Dx211x10=0第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图抛物线与轴相
5、交于点,与轴相交于点,则的面积为_2、如图,抛物线yx2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CDABAD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为_3、若点A(m,5)与点B(4,n)关于原点成中心对称,则mn_4、在平面直角坐标系中,已知抛物线ymx22mxm2(m0)(1)抛物线的顶点坐标为_;(2)点M(x1,y1)、N(x2,y2)(x1x23)是拋物线上的两点,若y1y2,x2x12,则y2的取值范围为_(用含 m的式子表示)5、问题背景:如图,将绕点逆时针旋转60得到,与交于点,可推出结论: 线 封 密
6、内 号学级年名姓 线 封 密 外 问题解决:如图,在中,点是内一点,则点到三个顶点的距离和的最小值是_四、解答题(5小题,每小题8分,共计40分)1、已知关于的方程有实根(1)求的取值范围;(2)设方程的两个根分别是,且,试求的值2、今年忠县柑橘喜获丰收,某果园销售的柑橘“忠橙”和“爱媛”很受消费者的欢迎,“忠橙”售价80元/箱,“爱媛”售价60元/箱在11月第一周“忠橙”的销量比“爱媛”的销量多100箱,且这两种柑橘的总销售额为50000元(1)在11月第一周,该果园“忠橙”和“爱媛”的销量各为多少箱?(2)为了扩大销售,11月第二周“忠橙”售价降价,销量比第一周培加了,“爱媛”售价不变,销
7、量比第一周增加了,结果这两种相橘第二周的总销售额比第一周的总销售额增加了,求的值3、如图,直角三角形中,为中点,将绕点旋转得到一动点从出发,以每秒1的速度沿的路线匀速运动,过点作直线,使(1)当点运动2秒时,另一动点也从出发沿的路线运动,且在上以每秒1的速度匀速运动,在上以每秒2的速度匀速运动,过作直线使,设点的运动时间为秒,直线与截四边形所得图形的面积为,求关于的函数关系式,并求出的最大值(2)当点开始运动的同时,另一动点从处出发沿的路线运动,且在上以每秒的速度匀速运动,在上以每秒2的速度匀度运动,是否存在这样的,使为等腰三角形?若存在,直接写出点运动的时间的值,若不存在请说明理由4、水果批
8、发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600kg经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20kg(1)若以每千克能盈利17元的单价出售,求每天的总毛利润为多少元;(2)现市场要保证每天总毛利润为7500元,同时又要使顾客得到实惠,求每千克应涨价多少元;(3)现需按毛利润的10%缴纳各种税费,人工费每日按销售量每千克支出1.5元,水电房租费每日300元若每天剩下的总纯利润要达到6000元,求每千克应涨价多少元5、用适当的方法解下列方程:(1)(2)-参考答案-一、单选题1、A【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】先求出
9、抛物线的解析式,再列出不等式,求出其解集或,从而可得当x=1时,有成立,最后求出a的取值范围【详解】解:抛物线P:,将抛物线P绕原点旋转180得到抛物线,抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P上,则点(-x,-y)一定在抛物线P上,抛物线的解析式为,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即令,解得:或,设,开口向下,且与x轴的两个交点为(0,0),(4a,0),即当时,要恒成立,此时,当x=1时,即可,得:,解得:,又故选A【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方
10、程也考查了二次函数的性质2、C【解析】【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可【详解】解:新正方形的边长为x+4,原正方形的边长为4,新正方形的面积为(x+4)2,原正方形的面积为16,y=(x+4)2-16=x2+8x,故选:C【考点】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键3、D【解析】【分析】根据二次函数的性质,进行判断,即可得到答案. 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,与y轴肯定有交点,故D错误;故选择:D.【考点】本题考查了
11、二次函数的性质,解题的关键是熟记二次函数的性质.4、A【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B的坐标即可【详解】ABO如图所示,点B(2,1)故选A【考点】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键5、A【解析】【分析】设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m,然后根据花圃面积为80m2列关于x的一元一次方程即可【详解】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m由题意得:x(26-2x)=80故答案为A【考点】本题考查了根据题意列一元二次方程,理解题意、设出未知数、表示出相关的量、找到等量关
12、系列方程是解答本题的关键二、多选题1、ABC【解析】【分析】首先根据对称轴公式结合a的取值可判定出b0,根据a、b、c的正负即可判断出A的正误;抛物线与x轴有两个不同的交点,则=b2-4ac0,故B正确;根据二次函数的性质即可判断出C的正误;由图象可知:当-1x3时,y0,即可判断出D的正误【详解】解:根据图象可得:抛物线开口向上,则a0抛物线与y交与负半轴,则c0,对称轴:x=-0,b0, 线 封 密 内 号学级年名姓 线 封 密 外 abc0,故A正确;它与x轴的两个交点分别为(-1,0),(3,0),则=b2-4ac0,故B正确抛物线与x轴的两个交点分别为(-1,0),(3,0),对称轴
13、是直线x=1,抛物线开口向上,当x1时,y随x的增大而减小,当x1x20时,y1y2;故C正确;由图象可知:当-1x3时,y0,故D错误;故正确的有ABC故选ABC【点睛】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口方向,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c)2、ACD【解析】【分析】各方程求出解,即可作出判断【详解】解:A、方程整理得:
14、x2-8x-5=0,这里a=1,b=-8,c=-5,=64+20=84,故选项A符合题意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故选项B不符合题意;C、方程整理得:x2+8x+4=0,解得:,故选项C符合题意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故选项D符合题意,故选:ACD【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键3、BCD【解析】【分析】观察两个半圆的位置关系,再确定能否通过图象变换得到,以及旋转、平移的方法【详解】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平
15、移1个单位,或先绕着点O旋转180,再向右平移1个单位,或绕着OB的中点旋转180即可得到图(2)故选BCD【点睛】本题考查了旋转、轴对称、平移的性质关键是根据变换图形的位置关系,确定变换规律 线 封 密 内 号学级年名姓 线 封 密 外 4、AC【解析】【分析】根据根的判别式代入k值计算即可得到答案【详解】解:A、当时,解得,选项说法正确,符合题意;B、当时,所以方程无实数根,选项说法错误,不符合题意;C、当时,所以方程无解,选项说法正确,符合题意;D、不论为何值时,方程不一定有实数根,选项说法错误,不符合题意;故选AC【点睛】本题考查了一元二次方程的判别式,解题的关键是熟练掌握一元二次方程
16、跟的判别与方程解得关系5、ABD【解析】【分析】根据因式分解法解一元二次方程的方法求解即可【详解】解:A、x23x+2=0,适用公式法,不适合用因式分解法来解题,符合题意;B、2x2=x+4,适用公式法,不适合用因式分解法来解题,符合题意;C、(x1)(x+2)=70,即,可得,故适合用因式分解法来解题,不符合题意;D、x211x10=0,适用公式法,不适合用因式分解法来解题,符合题意;故选:ABD【点睛】此题考查了解一元二次方程,解题的关键是熟练掌握解一元二次方程的方法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法三、填空题1、3【解析
17、】【分析】根据抛物线y=-x2-x+,可以求得该抛物线与x轴和y轴的交点,从而可以得到点A、B、C的坐标,然后即可得到AB和OC的长,从而可以求得ABC的面积【详解】解:抛物线y=-x2-x+,当y=0时,x1=-3,x2=1,当x=0时,y=,点A的坐标为(-3,0),点B的坐标为(1,0),点C的坐标为(0,),AB=1-(-3)=1+3=4,OC=,ABC的面积为:ABOC=故答案为:3【考点】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、三角形的面积,解答本题的关键是求出点A、B、C的坐标,利用数形结合的思想解答2、2 线 封 密 内 号学级年名姓 线 封 密 外 【解析】
18、【分析】利用二次函数图象上点的坐标特征可求出点A,B,C,D的坐标,由点A,D的坐标,利用待定系数法可求出直线AD的解析式,利用一次函数图象上点的坐标特征可求出点E的坐标,再利用二次函数图象上点的坐标特征可得出点P,Q的坐标,进而可求出线段PQ的长【详解】解:当y0时,x2+x+20,解得:x12,x24,点A的坐标为(2,0);当x0时,yx2+x+22,点C的坐标为(0,2);当y2时,x2+x+22,解得:x10,x22,点D的坐标为(2,2)设直线AD的解析式为ykx+b(k0),将A(2,0),D(2,2)代入ykx+b,得:解得:直线AD的解析式为yx+1当x0时,yx+11,点E
19、的坐标为(0,1)当y1时,x2+x+21,解得:x11,x21+,点P的坐标为(1,1),点Q的坐标为(1+,1),PQ1+(1)2故答案为:2【考点】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点P,Q的坐标是解题的关键3、【解析】【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求解即可【详解】解:点A(m,5)与点B(4,n)关于原点成中心对称,m=4,n=-5, 线 封 密 内 号学级年名姓 线 封 密 外 m+n=-5+4=-1,故答案为:-1
20、【考点】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键4、 (1,-2) 【解析】【分析】(1)将二次函数解析式化为顶点式求解;(2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,得到当2x23时,y1y2,再将x=2、x=3代入函数关系式进行求解即可 【详解】(1),抛物线顶点坐标为(1,-2),故答案为 (1,-2)(2)抛物线的对称轴为直线x=1,当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,当2x23时,
21、y1y2,对于y=m(x-1)2-2,当x =2时,y=m-2;当x=3时,y=4m-2,【考点】本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系5、【解析】【分析】如图,将MOG绕点M逆时针旋转60,得到MPQ,易知MOP为等边三角形,继而得到点O到三顶点的距离为:ONOMOGONOPPQ,由此可以发现当点N、O、P、Q在同一条直线上时,有ONOMOG最小,此时,NMQ75+60135,过Q作QANM交NM的延长线于A,利用勾股定理进行求解即可得.【详解】如图,将MOG绕点M逆时针旋转60,得到MPQ,显然MOP为等边三角形,OMOGOPPQ,点O到三顶点的距离为
22、:ONOMOGONOPPQ,当点N、O、P、Q在同一条直线上时,有ONOMOG最小,此时,NMQ75+60135,过Q作QANM交NM的延长线于A,则MAQ=90,AMQ180-NMQ=45,MQMG4,AQAMMQcos45=4,NQ,故答案为. 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了旋转的性质,最短路径问题,勾股定理,解直角三角形等知识,综合性较强,有一定的难度,正确添加辅助线是解题的关键.四、解答题1、(1);(2)不存在【解析】【分析】(1)根据根的判别式即可求出答案(2)根据根与系数的关系即可求出答案【详解】解:(1),;(2)由题意可知:x1+x2=2,x
23、1x2=,k=,k=不符合题意,舍去,k的值不存在【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练运用根与系数的关系以及根的判别式,本题属于基础题型2、 (1)该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)40【解析】【分析】(1)设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,根据等量关系是“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000,列方程,解方程即可;(2)根据等量关系是“忠橙”降价后售价降价后销量箱数+“爱媛”售价增加后销量箱数=总销售额比第一周的总销售额增加了,列方程,解方程即可(1)解:设该果园11月第一周销售“忠橙”箱,则销售“爱媛”
24、箱,由题意得,解得,经检验是原方程的根,答:该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱 线 封 密 内 号学级年名姓 线 封 密 外 (2)解:由题意得整理,得:,解得:,(不合题意,舍去),答:的值为40【点睛】本题考查列一元一次方程解销售问题应用题,列一元二次方程解应用题,掌握列一元一次方程,一元二次方程解应用题的方法与步骤,抓住等量关系“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000列方程是解题关键3、(1),S的最大值为;(2)存在,m的值为或或或.【解析】【分析】(1)分、和三种情况分别表示出有关线段求得两个变量之间的函数关系即可(2)分两种情形:如图中,由题
25、意点在上运动的时间与点在上运动的时间相等,即当时,当时,当时,分别构建方程求解即可如图中,作于首先证明,根据构建方程即可解决问题【详解】解:(1)如图中,当时,点与点都在上运动,此时两平行线截平行四边形的面积为如图中,当时,点在上运动,点仍在上运动则,而,故此时两平行线截平行四边形的面积为: 线 封 密 内 号学级年名姓 线 封 密 外 ,如图中,当时,点和点都在上运动则,此时两平行线截平行四边形的面积为故关于的函数关系式为,当时,S随t增大而增大,当时,S随t增大而增大,当时,S随t增大而减小,当t=8时,S最大,代入可得S=;(2)如图中,由题意点在上运动的时间与点在上运动的时间相等,当时
26、,则有,解得,当时,则有,解得,当时,则有,解得如图中,作于在RtCHR中,四边形是平行四边形,四边形是矩形,当时,则有,解得,综上所述,满足条件的m的值为或或或 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题属于四边形综合题,考查了平行四边形的性质,多边形的面积,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题4、 (1)每天的总毛利润为7820元;(2)每千克应涨价5元;(3)每千克应涨价15元或元【解析】【分析】(1)设每千克盈利x元,可售y千克,由此求得关于y与x的函数解析式,进一步代入求得答案即可;(2)
27、利用每千克的盈利销售的千克数总利润,列出方程解答即可;(3)利用每天总毛利润税费人工费水电房租费每天总纯利润,列出方程解答即可(1)解:设每千克盈利x元,可售y千克,设y=kx+b,则当x10时,y600,当x11时,y60020580,由题意得,解得所以销量y与盈利x元之间的关系为y20x+800,当x17时,y460,则每天的毛利润为174607820元;(2)解:设每千克盈利x元,由(1)可得销量为(20x+800)千克,由题意得x(20x+800)7500,解得:x125,x215,要使得顾客得到实惠,应选x15,每千克应涨价15105元;(3)解:设每千克盈利x元,由题意得x(20x+800)10%x(20x+800)1.5(20x+800)3006000,解得:x125,x2,则每千克应涨价251015元或10元【点睛】此题主要一元二次方程的实际运用,找出题目蕴含的数量关系,理解销售问题中的基本关系是解决问题的关键5、 (1),(2),【解析】【分析】根据因式分解法解一元二次方程即可(1)解: 线 封 密 内 号学级年名姓 线 封 密 外 解得,(2)解:解得,【点睛】本题考查了解一元二次方程,熟练掌握因式分解法解一元二次方程是解题的关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有