1、人教版七年级数学上册第二章整式的加减专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于整式的说法,正确的是()A系数是5,次数是B系数是,次数是C系数是,次数是D系数是,次数是2、已知a、b、c
2、在数轴上的位置如图,下列说法:abc0;c+a0;cb0正确的有()A1个B2个C3个D4个3、如果,那么等于()ABC2D4、整式的值()A与x、y、z的值都有关B只与x的值有关C只与x、y的值有关D与x、y、z的值都无关5、代数式的正确解释是()A与的倒数的差的平方B与的差的平方的倒数C的平方与的差的倒数D的平方与的倒数的差6、下列各组中的两项,不是同类项的是()A-x2y和2x2yB23和32C-m3n2与m2n3D2R与2R7、已知,则代数式的值为()A0B1CD8、下列单项式中,的同类项是()ABCD9、()ABCD10、式子,0,a,中,下列结论正确的是()A有4个单项式,2个多项
3、式B有3个单项式,3个多项式C有5个整式D以上答案均不对第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为_2、如果单项式与的和仍是单项式,那么_3、观察下面的一列单项式:x,根据你发现的规律,第100个单项式为_;第n个单项式为_4、计算的结果等于_5、当时,整式_三、解答题(5小题,每小题10分,共计50分)1、计算下式的值:,其中,甲同学把错抄成,但他计算的结果也是正确的,你能说明其中的原因吗?2、化简求值:,其中3、阅读下列材
4、料,完成相应的任务:三角形数古希腊著名数学家的毕达哥拉斯学派把1,3,6,10,这样的数称为“三角形数”,第n个“三角形数”可表示为:发现:每相邻两个“三角形数”的和有一定的规律如:;(1)第5个“三角形数”与第6个“三角形数”的和为_;(2)第n个“三角形数”与第个“三角形数”的和的规律可用下面等式表示:_+_=_,请补全等式并说明它的正确性4、数学老师给出这样一个题:.(1)若“”与“”相等,求“”(用含的代数式表示);(2)若“”为,当时,请你求出“”的值.5、已知关于x,y的多项式x4(m2)xnyxy23(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?
5、-参考答案-一、单选题1、B【解析】【分析】的系数是字母前面的数字,次数是整式中所有字母次数之和【详解】,那么系数是,次数是x的1次加上y的n次为:1+n次故选B【考点】本题考查整式的系数和次数,牢记系数是字母前的数字,次数是所有字母次数之和2、C【解析】【分析】根据a、b、c在数轴上的位置可得出a0、cb0,|b|a |c|,对各选项一一判断即可【详解】解:a、b、c在数轴上的位置如图,a0,cb0,|b|a |c|,a、b、c中两负一正,故abc0正确;a |c|,c0,a+ c0故c+a0不正确;c b,|b|a |c|cb0,故cb0,故0正确;正确的个数有3个故选择C【考点】本题考查
6、利用数轴上表示数判定代数式的符号问题,掌握有理数的加减乘除的符号的确定方法,数形结合思想的利用,关键从数轴确定a、b、c的大小与绝对值的大小3、C【解析】【分析】根据有理数的加法,先计算绝对值,再进行混合运算即可【详解】故选C【考点】本题考查了代数式求值,有理数的加减运算,求一个数的绝对值,正确的计算是解题的关键4、D【解析】【分析】原式去括号合并得到最简结果,判断即可【详解】解:原式=xyz2+4yx-1-3xy+z2yx-3-2xyz2-xy=-4, 则代数式的值与x、y、z的取值都无关 故选D【考点】本题主要考查了整式的加减,解决本题的关键是要熟练掌握运算法则是解本题的关键5、D【解析】
7、【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来叙述时,要求既要表明运算的顺序,又要说出运算的最终结果【详解】解:代数式的正确解释是的平方与的倒数的差.故选:D.【考点】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序具体说法没有统一规定,以简明而不引起误会为出发点6、C【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)即可作出判断【详解】解:A、-x2y和2x2y所含字母相同,相同字母的指数相同,是同类项;B、23和32,都是整数,是同类项;C、-m3n2与m2n3,所含字母相同,相同字母的指数不同,不是同类项;D、2R与2R,所含字母相同,相同字
8、母的指数相同,是同类项;故选C【考点】本题考查了同类项定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点7、B【解析】【分析】把代入代数式,求出算式的值为多少即可【详解】解:,故选B【考点】本题考查了代数式的求值:求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值8、B【解析】【分析】比较对应字母的指数,分别相等就是同类项【详解】a的指数是3,b的指数是2,与中a的指数是2,b的指数是3不一致,不是的同类项,不符合题意;a的指数是2,b的指数是3,与中a的指数是2,b的指数是3一致,是的同类项,符合题意;a的指数是
9、2,b的指数是1,与中a的指数是2,b的指数是3不一致,不是的同类项,不符合题意;a的指数是1,b的指数是3,与中a的指数是2,b的指数是3不一致,不是的同类项,不符合题意;故选B【考点】本题考查了同类项,正确理解同类项的定义是解题的关键9、A【解析】【分析】根据去括号法则解答【详解】解:2+2x故选:A【考点】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号10、A【解析】【分析】数与字母的乘积形式是单项式,单独一个数或一个字母是单项式,几个单项式的和
10、是多项式【详解】解:是两个单项式的和,是多项式;是单项式;是3个单项式的和,是多项式:0,a是单项式;是单项式;不是整式,综上所述,单项式共有4个,多项式共有2个,整式共有6个,故选:A【考点】本题考查多项式、单项式的定义,是基础考点,掌握相关知识是解题关键二、填空题1、5【解析】【分析】设正方形a、b、c、d的边长分别为a、b、c、d,分别求得b=c,c=d,由“优美矩形”ABCD的周长得4d+2c=26,列式计算即可求解【详解】解:设正方形a、b、c、d的边长分别为a、b、c、d,“优美矩形”ABCD的周长为26,4d+2c=26,a=2b,c=a+b,d=a+c,c=3b,则b=c,d=
11、2b+c=c,则c=d,4d+d =26,d=5,正方形d的边长为5,故答案为:5【考点】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键2、4【解析】【分析】根据题意可知:单项式与单项式是同类项,然后根据同类项的定义即可求出m和n,从而求出结论【详解】解:单项式与单项式的和仍然是单项式,单项式与单项式是同类项,m=3,n=14故答案为:4【考点】此题考查的是求同类项的指数中的参数,掌握合并同类项法则和同类项的定义是解题关键3、 【解析】【分析】确定系数与序号的关系,指数与序号的关系,确定变化规律,计算即可【详解】解:一列单项式:x,第100个单项式为;
12、第n个单项式为故答案为:,【考点】本题考查了整的加减中代数式的规律问题,正确掌握寻找规律的基本方法是解题的关键4、【解析】【分析】根据合并同类项的性质计算,即可得到答案【详解】故答案为:【考点】本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解5、9【解析】【分析】根据题意先将代数式去括号,合并同类项化简,再将字母的值代入求解即可;【详解】当,原式故答案为:9【考点】本题考查了去括号,合并同类项,代数式求值,正确的去括号是解题的关键三、解答题1、见解析【解析】【分析】先化简,得出结果为;故将抄错不影响最终结果【详解】解:=化简结果与无关将抄错不影响最终结果【考点】本题
13、主要考查了多项式的加减法运算,掌握去括号法则和合并同类项法则并熟练运用是解题关键2、,【解析】【分析】先去括号,再合并,最后把a的值代入计算即可【详解】原式=5a2a2+5a22a2a2+6a=5a24a24a=a24a当a=时,原式=()24=2=【考点】本题考查了整式的化简求值,解题的关键是去括号和合并同类项3、 (1)36(2),【解析】【分析】(1)根据第n个“三角形数”可表示为:进行求解即可;(2)根据规律得到等式并化简即可证明(1)解:第5个“三角形数”为:;第6个“三角形数”为:;第5个“三角形数”与第6个“三角形数”的和为:15+21=36,故答案是:36;(2)+=理由:左边
14、右边原等式成立故答案是:,【考点】本题主要考查整式的混合运算的应用,正确理解“三角形数”的概念是解题的关键4、(1);(2),3【解析】【分析】(1)用替换,得到-,进而得到答案;(2)把“”用替换,求出,再把代入求解即可得到答案;【详解】解:由题意得: 把“”用替换,得到:即:当时,原式【考点】本题主要考查了新定义下的二元一次方程的应用,能把作相应的替换是解题的关键5、(1)n4,m2;(2)m2,n为任意实数【解析】【分析】(1)根据多项式是五次四项式可知n15,m20,从而可求得m、n的取值;(2)根据多项式是四次三项式可知:m20,n为任意实数【详解】解:(1)多项式是五次四项式,n15,m20,n4,m2;(2)多项式是四次三项式,m20,n为任意实数,m2,n为任意实数【考点】本题主要考查的是多项式的定义,掌握多项式的定义是解题的关键