ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:257.69KB ,
资源ID:634646      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-634646-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022-2023学年京改版八年级数学上册第十章分式专题练习试题(含解析).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022-2023学年京改版八年级数学上册第十章分式专题练习试题(含解析).docx

1、京改版八年级数学上册第十章分式专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两人骑自行车从相距60千米的A、B两地同时出发,相向而行,甲从A地出发至2千米时,想起有东西忘在A地,即返回去取

2、,又立即从A地向B地行进,甲、乙两人恰好在AB中点相遇,已知甲的速度比乙的速度每小时快2.5千米,求甲、乙两人的速度,设乙的速度是x千米/小时,所列方程正确的是()ABCD2、下列式子:,其中分式有()A1个B2个C3个D4个3、将公式(均不为零,且)变形成求的式子,正确的是()ABCD4、在攻击人类的病毒中,某类新型冠状病毒体积较大,直径约为0.000 000 125米,含约3万个碱基, 拥有RNA病毒中最大的基因组,比艾滋病毒和丙型肝炎的基因组大三倍以上,比流感的基因组大两倍0.000000125用科学记数法表示为()A1.2510-6B1.2510-7C1.25106D1.251075、

3、若关于x的分式方程有增根,则m的值是()A1B1C2D26、已知,为实数且满足,设,若时,;若时,;若时,;若,则则上述四个结论正确的有()A1B2C3D47、关于x的分式方程1的解为正数,则字母a的取值范围为()Aa1Ba1Ca1Da18、化简(a1)(1)a的结果是()Aa2B1Ca2D19、已知,则分式与的大小关系是()ABCD不能确定10、计算的结果是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程的解是_2、关于x的分式方程无解,则m的值为_3、如果分式有意义,那么的取值范围是_4、计算:_5、已知分式化简后的结果是一个整式,则常数=_三、解答

4、题(5小题,每小题10分,共计50分)1、现有一装修工程,若甲、乙两队装修队合作,需要12天完成;若甲队先做5天,剩余部分再由甲乙两队合作,还需要9天才能完成求:(1)甲乙两个装修队单独完成分别需要几天?(2)已知甲队每天施工费用4000元,乙队每天施工费用为2000元,要使该工程施工总费用为70000元,则甲装修队施工多少天?(3)甲装修队有装修工人12人,乙装修队有装修工人10人,该工程需要在13天内(包括13天)完成,该工程由甲乙两队合作完成,两队合作4天后,乙队另有任务需调出部分人员,则乙队最多调走多少人?2、解方程:13、八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走

5、,过了20分后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度4、先化简:,然后选择一个合适的x值代入求值5、先约分,再求值:其中-参考答案-一、单选题1、D【解析】【分析】乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,利用时间相等列出方程即可【详解】设乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,根据时间相等,得,故选D【考点】本题考查了分式方程的应用题,正确理解题意,根据相遇时间相等列出方程是解题的关键2、B【解析】【分析】根据分母中含有字

6、母的式子是分式,可得答案【详解】解:,的分母中含有字母,属于分式,共有2个故选:B【考点】本题考查了分式的定义,熟悉相关性质,注意是常数,是解题的关键3、A【解析】【分析】根据等式的性质即可求出答案【详解】,所以故选:A【考点】本题考查等式的性质,解题的关键是熟练运用等式的性质,属于基础题型4、B【解析】【分析】根据科学记数法的表示方法将原数表示为的形式,其中,n是正整数【详解】解:0.000000125=1.2510-7,故答案选:B【考点】本题考查了科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前

7、面的0)5、C【解析】【分析】先把分式方程化为整式方程,再把增根x=2代入整式方程,即可求解【详解】解:,去分母得:,关于x的分式方程有增根,增根为:x=2,即:m=2,故选C【考点】本题主要考查解分式方程以及分式方程的增根,把分式方程化为整式方程是解题的关键6、B【解析】【分析】先求出对于当时,可得,所以正确;对于当时,不能确定的正负,所以错误;对于当时,不能确定的正负,所以错误;对于当时,正确【详解】,当时,所以,正确;当时,如果,则此时,错误;当时,如果,则此时,错误;当时,正确故选B【考点】本题关键在于熟练掌握分式的运算,并会判断代数式的正负7、B【解析】【详解】解:分式方程去分母得:

8、2x-a=x+1,解得:x=a+1根据题意得:a+10且a+1+10,解得:a-1且a-2即字母a的取值范围为a-1故选B点睛:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为08、A【解析】【分析】根据分式的混合运算顺序和运算法则计算可得【详解】原式=(a1)a=(a1)a=a2,故选A【考点】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则9、A【解析】【分析】将两个式子作差,利用分式的减法法则化简,即可求解【详解】解:,故选:A【考点】本题考查分式的大小比较,掌握作差法是解题的关键10、D【解析】【分析】先求出两个分式的乘积,然后根据分式的性质:分子和

9、分母同时乘以或除以一个不为0的数,分式的值不变,进行求解即可【详解】解: ,故选D【考点】本题主要考查了分式的乘法和分式的化简,解题的关键在于能够熟练掌握相关知识进行求解二、填空题1、x1【解析】【分析】原方程去分母得到整式方程,求解整式方程,最后检验即可【详解】解:,1,方程两边都乘2x1,得2x2x1,解得:x1,检验:当x1时,2x10,所以x1是原方程的解,即原方程的解是x1,故答案为:x1【考点】本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验2、1或6或【解析】【分析】方程两边都乘以,把方程化为整式方程,再分两种情况讨论即可得到结论【详解】

10、解:, , ,当时,显然方程无解,又原方程的增根为:,当时,当时,综上当或或时,原方程无解故答案为:1或6或【考点】本题考查的是分式方程无解的知识,掌握分式方程无解时的分类讨论是解题的关键3、且#x-3且x1【解析】【分析】根据分式有意义的条件,零指数幂的运算法则列不等式求解【详解】解:由题意可得:,且,故答案为:且【考点】本题考查分式有意义的条件,零指数幂的运算,解题的关键是掌握分式有意义的条件(分母不能为零),4、5【解析】【分析】根据绝对值和零指数幂进行计算即可【详解】解:,故答案为:5【考点】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键5、【解析】【分析】依题意可知,分式

11、化简后是一个整式,说明分式可以由公约数“x+1”,即分式的分子部分可以化成的形式,将这个分子展开与原式中分子部分联立,求取常数的值即可.【详解】分式化简后的结果是一个整式分式的分子部分可以化为:解得:,故答案为:【考点】本题考查了分式的变形求字母的值,解决本题的关键是正确的将分式的分子部分进行变形,使得分子部分含有(x+1).三、解答题1、(1)甲、乙两装修队单独完成此项工程分别需要20天、30天;(2)10天;(3)2人【解析】【分析】(1)等量关系为:甲的工作效率5+甲乙合作的工作效率9=1,先算出甲单独完成此项工程需要多少个月而后算出乙单独完成需要的时间;(2)两个关系式:甲乙两个工程队

12、需完成整个工程;工程施工总费用为70000元(3)设乙队调走m人,利用(1)中所求数据得出甲乙两队每人一天完成的工作量,进而得出不等式求出即可【详解】解:(1)设甲装修队单独完成此项工程需要x天根据题意,得,解得x=20,经检验,x=20是原方程的解,答:甲、乙两装修队单独完成此项工程分别需要20,30天(2)设实际工作中甲、乙两装修队分别做a、b天根据题意,得,解得a=10,b=15答:要使该工程施工总费用为70000元,甲装修队应施工10天(3)设乙装修队调走m人,由题意可得:,解得:m,m的最大整数值为2,答:乙队最多调走2人【考点】本题考查了分式方程的应用以及不等式解法与应用,利用总工

13、作量为1得出等式方程是解决问题的关键2、x= -1【解析】【分析】方程两边同乘以最简公分母(x-2),分式方程化为一元一次方程,解一元一次方程即可【详解】等式两边同时乘以(x-2)得2x+x-2=-5,移项合并同类项得3x=-3,系数化为1得x=-1检验:当x=-1时,x-20,x=-1是原分式方程的解【考点】本题考查解分式方程,关键是两边乘最简公分母化为整式方程,这是解分式方程的基本思想,注意的是解分式方程一定要检验3、15千米/时【解析】【分析】根据时间来列等量关系关键描述语为:“过了20分后,其余同学乘汽车出发,结果他们同时到达”;等量关系为:骑自行车同学所用时间-乘车同学所用时间=【详

14、解】设骑车同学的速度为x千米/时则:解得:x15检验:当x15时,6x0,x15是原方程的解答:骑车同学的速度为15千米/时【考点】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键4、化简结果是:,选择x=1时代入求值为-1.【解析】【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可【详解】解:原式.当x=1时代入,原式=.故答案为:化简结果是,选择x=1时代入求值为-1.【考点】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键,最后在选择合适的x求值时要保证选取的x不能使得分母为0.5、【解析】【分析】先把分式的分子分母分解因式,约分后把a、b的值代入即可求出答案【详解】解:原式= = 当时原式=【考点】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1