收藏 分享(赏)

2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx

上传人:a**** 文档编号:634222 上传时间:2025-12-12 格式:DOCX 页数:17 大小:333.88KB
下载 相关 举报
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第1页
第1页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第2页
第2页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第3页
第3页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第4页
第4页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第5页
第5页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第6页
第6页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第7页
第7页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第8页
第8页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第9页
第9页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第10页
第10页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第11页
第11页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第12页
第12页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第13页
第13页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第14页
第14页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第15页
第15页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第16页
第16页 / 共17页
2022-2023学年京改版八年级数学上册期中综合练习试题 (A)卷(解析版).docx_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册期中综合练习试题 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列各组数中,互为相反数的一组是()A2与B2与C2与D|2|与22、下列分式,中,最简分式有()A1个B2个C

2、3个D4个3、运算后结果正确的是()ABCD4、下列判断正确的是A带根号的式子一定是二次根式B一定是二次根式C一定是二次根式D二次根式的值必定是无理数5、若,则下列等式不成立的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列各式中能与合并的是()ABCD2、以下各式不是最简二次根式的是()ABCD3、下列运算结果不正确的是()ABCD4、下列计算正确的是()ABCD5、下列运算中,错误的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、当x=1时,分式的值是_2、我国南宋著名数学家秦九韶在他的著作数书九章一书中,给出了著名的秦九韶公式,也叫

3、三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=现已知ABC的三边长分别为1,2,则ABC的面积为_3、已知,则_4、将下列各数填入相应的括号里:整数集合;负分数集合;无理数集合5、计算=_四、解答题(5小题,每小题8分,共计40分)1、阅读下列材料:设:,则.由-,得,即.所以.根据上述提供的方法.把和化成分数,并想一想.是不是任何无限循环小数都可以化成分数?2、在计算的值时,小亮的解题过程如下:解:原式(1)老师认为小亮的解法有错,请你指出:小亮是从第_步开始出错的;(2)请你给出正确的解题过程3、(1)计算:;(2)因式分解:.4、计算:(1);(2)5、计

4、算:+()2+|3|-参考答案-一、单选题1、A【解析】【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项【详解】解:A、2,2与2互为相反数,故选项正确,符合题意;B、2,2与2不互为相反数,故选项错误,不符合题意;C、2与不互为相反数,故选项错误,不符合题意;D、|2|2,2与2不互为相反数,故选项错误,不符合题意故选:A【考点】本题考查了算术平方根,立方根,相反数的概念,解题的关键是掌握相关概念并对数据进行化简2、B【解析】【分析】根据最简分式的定义(分式的分子和分母除1以外没有其它的公因式,叫最简分式)逐个判断即可【详解】解:,故原式不是最简分式;是最简分式,是最简分式,故原

5、式不是最简分式,最简分式有2个故选:B【考点】本题考查了最简分式的定义,能熟记最简分式的定义是解此题的关键3、C【解析】【分析】根据实数的运算法则即可求解;【详解】解:A.,故错误;B.,故错误;C.,故正确;D.,故错误;故选:C【考点】本题主要考查实数的计算,掌握实数计算的相关法则是解题的关键4、C【解析】【分析】直接利用二次根式的定义分析得出答案【详解】解:A、带根号的式子不一定是二次根式,故此选项错误;B、,a0时,一定是二次根式,故此选项错误;C、一定是二次根式,故此选项正确;D、二次根式的值不一定是无理数,故此选项错误;故选C【考点】此题主要考查了二次根式的定义,正确把握二次根式的

6、性质是解题关键5、D【解析】【分析】设,则、,分别代入计算即可【详解】解:设,则、,A,成立,不符合题意;B,成立,不符合题意;C. ,成立,不符合题意;D. ,不成立,符合题意;故选:D【考点】本题考查了等式的性质,解题关键是通过设参数,得到x、y、z的值,代入判断二、多选题1、BC【解析】【分析】先化简各二次根式,再根据同类二次根式的概念逐一判断即可得【详解】A选项:,不能与合并,不符合题意;B选项:,能与合并,符合题意;C选项:,能与合并,符合题意;D选项:,不能与合并,不符合题意;故选:BC【考点】考查了同类二次根式,解题关键是掌握把几个二次根式化为最简二次根式后,如果它们的被开方数相

7、同,就把这几个二次根式叫做同类二次根式2、ABC【解析】【分析】根据最简二次根式的定义逐个判断即可【详解】解:A、,不是最简二次根式,故本选项符合题意;B、,不是最简二次根式,故本选项符合题意;C、,不是最简二次根式,故本选项符合题意;D、,是最简二次根式,故本选项不符合题意;故选ABC【考点】本题主要考查了最简二次根式的定义,最简二次根式的条件:(1)被开方数的因数是整数或整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式3、BCD【解析】【分析】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算,同样要注意的

8、地方有:一是要确定好结果的符号,二是运算顺序不能颠倒【详解】A,正确;B,错误;C,错误;D,错误故答案选:BCD【考点】本题考查了分式的混合运算,解答本题的关键在于熟练掌握各知识点的概念和运算法则4、BC【解析】【分析】直接利用二次根式的加减运算法则分别计算得出答案【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、,故此选项不符合题意;故选BC【考点】此题主要考查了二次根式的加减,正确掌握相关运算法则是解题关键5、ABCD【解析】【分析】根据算术平方根和有理数的乘方的求解方法进行逐一求解判断即可【详解】解:A、 ,故此选项符合题意;B、=4,故此选项符

9、合题意;C、根号里面不能为负,故此选项符合题意;D、 ,故此选项符合题意;故选ABCD【考点】本题主要考查了算术平方根和有理数的乘方,解题的关键在于能够熟练掌握相关计算方法三、填空题1、【解析】【分析】将代入分式,按照分式要求的运算顺序计算可得.【详解】当时,原式.故答案为:.【考点】本题主要考查分式的值,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.2、1【解析】【分析】把题中的三角形三边长代入公式求解.【详解】S=,ABC的三边长分别为1,2,则ABC的面积为:S=1,故答案为1【考点】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积

10、公式解答3、【解析】【分析】根据分式的基本性质,由可得,然后代入式子进行计算即可得解【详解】解:,则故答案为:【考点】本题考查了分式的化简求值,掌握分式的基本性质并能灵活运用性质进行分式的化简求值是解题的关键4、见解析【解析】【分析】先化简,后根据整数包括正整数,0,负整数;负分数,无理数的定义去判断解答即可【详解】-|-0.7|=-0.7,是负分数,-(-9)=9,是整数,是负分数,0是整数,8是整数,-2是整数,是无理数,是正分数,是无限不循环小数,是无理数,是无限循环小数,是有理数,是负分数,整数集合-(-9),0,8, -2 ;负分数集合-|-0.7|, , ;无理数集合, 故答案为:

11、-(-9),0,8,-2;-|-0.7|, ,;,【考点】本题考查了有理数,无理数,熟练掌握各数的定义,特征,并合理化简判断是解题的关键5、-2【解析】【分析】原式利用除法法则变形,约分即可得到结果【详解】解:原式=-2,故答案为:-2【考点】本题考查了分式的除法,熟练掌握运算法则是解本题的关键四、解答题1、,.任何无限循环小数都可以化成分数.【解析】【分析】设则,;由,得;由已知,得,所以任何无限循环小数都可以这样化成分数.【详解】解:设则,由-,得,即.所以.由已知,得,所以.任何无限循环小数都能化成分数.【考点】考核知识点:无限循环小数和有理数.模仿,理解材料是关键.2、(1);(2)答

12、案见解析【解析】【分析】根据二次根式的运算法则即可求出答案【详解】解:(1)二次根式加减时不能将根号下的被开方数进行加减,故错误,故填;(2)原式=2=6=4【考点】本题考查了二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型3、(1);(2)【解析】【分析】(1)原式利用零指数幂、负整数指数幂的性质计算即可求出值;(2)原式利用平方差公式分解即可【详解】解:(1)原式;(2)原式;【考点】此题考查了实数运算与因式分解运用公式法,熟练掌握因式分解的方法是解本题的关键4、(1);(2)【解析】【分析】(1)先计算有理数的乘方,零次幂,负整数指数幂的运算,再计算乘法运算,最后计算加减,从而可得答案;(2)先计算多项式乘以多项式,单项式乘以多项式,再合并同类项即可.【详解】解:(1) (2) 【考点】本题考查的是零次幂与负整数指数幂的含义,整式的乘法运算,掌握零次幂与负整数指数幂的含义及整式的乘法运算的运算法则是解题的关键.5、0【解析】【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可【详解】解:原式=+4+3-,=3+4+3-,=0【考点】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1