ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:884KB ,
资源ID:630813      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-630813-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省南通市启东市2017-2018学年高二下学期期末考试数学试题 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省南通市启东市2017-2018学年高二下学期期末考试数学试题 WORD版含答案.doc

1、江苏省南通市启东市2017-2018学年高二下学期期末考试数学试题第卷(共160分)一、填空题(每题5分,满分70分,将答案填在答题纸上)1.“”的否定是 2.函数的定义域是 3.两根相距的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于的概率是 4.命题,命题,则“或”是 命题.(填“真”、“假”)5.函数的导函数 6.已知函数是上奇函数,且当时,则 7.已知集合,若,则实数的值是 8.函数的单调减区间为 9.“”是“函数是上的奇函数”的 条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中一个)10.设函数图象在处的切线方程是,则函数的图象在处的切线方程是

2、11.若关于的不等式的解集是,则实数的值是 12.函数的图象如图所示,则的取值范围是 13.已知函数,若函数恰有两个不同的零点,则实数的取值范围是 14.已知定义在实数集上的偶函数在区间上是增函数.若存在实数,对任意的,都有,则正整数的最大值为 二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.甲、乙两个同学分別抛掷一枚质地均匀的骰子.(1)求他们抛掷的骰子向上的点数之和是4的倍数的概率;(2)求甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的概率.16.已知集合.(1)当时,求集合;(2)当时,若,求实数的取值范围.17.如图,在圆心角为,半径为的扇

3、形铁皮上截取一块矩形材料,其中点为圆心,点在圆弧上,点在两半径上,现将此矩形铁皮卷成一个以为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱形铁皮罐的容积为.(1)求圆柱形铁皮罐的容积关于的函数解析式,并指出该函数的定义域;(2)当为何值时,才使做出的圆柱形铁皮罐的容积最大?最大容积是多少? (圆柱体积公式:,为圆柱的底面枳,为圆柱的高)18.已知命题函数是上的奇函数,命题函数的定义域和值域都是,其中.(1)若命题为真命题,求实数的值;(2)若“且”为假命题,“或”为真命题,求实数的取值范围.19.已知函数,集合.(1)当时,解不等式;(2)若,且,求实数的取值范围;(3)当

4、时,若函数的定义域为,求函数的值域.20.已知函数.(1)若函数的图象在处的切线过点,求的值;(2)当时,函数在上没有零点,求实数的取值范围;(3)当时,存在实数使得,求证:. 第卷(共40分)(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤.)21.求下列函数的导数:(1);(2).22. 2名男生、4名女生排成一排,问:(1)男生平必须排在男生乙的左边(不一定相邻)的不同排法共有多少种?(2)4名女生不全相邻的不同排法共有多少种?23.小陈同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前两次投篮是否命中相互之间没有影响.第三次投篮受到前两次

5、结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,否则为.(1)求小陈同学三次投篮至少命中一次的概率;(2)记小陈同学三次投篮命中的次数为随机变量,求的概率分布及数学期望.24.已知,定义.(1)求的值;(2)证明:.试卷答案一、填空题1xR,2x23x40;2(或x|x);3;4真;52x2cosx;61;70;8(0,1);9必要不充分;102xy20(或y2x2);112;12(0,+);13;144二、解答题15【解】(1)记“他们抛掷的骰子向上的点数之和是4的倍数”为事件A,基本事件共有36个,事件A包含9个基本事件,故P(A)=;(2)记“甲抛掷的骰子向上的点数不大

6、于乙抛掷的骰子向上的点数”为事件B,基本事件共有36个,事件B包含21个基本事件,故P(B)= 答 (1)他们抛掷的骰子向上的点数之和是4的倍数的概率为;(2)甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的概率为16【解】(1)当k1时,Ax|0x15x|1x4; (2)因为AB= B,所以BA, 由0kx15,得1kx4,当k=0时,A=R,满足BA成立; 当k0时,A=, 由BA,得, 即,故,综上所述: 17【解】(1)连接OB,在RtOAB中,由AB=x,利用勾股定理可得OA,设圆柱底面半径为r,则2r, 即4r3600x,所以V(x)rxx,即铁皮罐的容积为V(x)关于x的函数

7、关系式为V(x),定义域为(0,60).(2)由V (x)0,x(0,60),得x20 列表如下:x(0,20)20(20,60)V (x)0V(x)极大值V(20)所以当x20时,V(x)有极大值,也是最大值为.答:当x为20 cm时,做出的圆柱形铁皮罐的容积最大,最大容积是cm3.18.【解】(1)若命题p为真命题,则f(x)f(x)0, 即,化简得对任意的xR成立, 所以k1 (2)若命题q为真命题,因为在a,b上恒成立,所以g(x)在a,b上是单调增函数,又g(x)的定义域和值域都是a,b,所以 所以a,b是方程的两个不相等的实根,且1ab即方程有两个大于1的实根且不相等, 记h(x)

8、k2x2k(2k1)x1,故解得, 所以k的取值范围为 因为“p且q”为假命题,“p或q”为真命题,所以命题p和q中有且仅有一个为真命题, 即p真q假,或p假q真 所以或所以实数k的取值范围为 19.【解】(1)当a3时,由f(x)1得ex3e-x11, 所以e2x2ex30,即(ex3) (ex1)0, 所以ex3,故xln3,所以不等式的解集为(ln3,+). (2)由x2x0,得0x1,所以Ax|0x1.因为AB,所以log2f(x)1在0x1上有解, 即 f(x)2在0x1上有解,即exae-x30在0x1上有解, 所以a3exe2x在0x1上有解,即a3exe2xmin. 由0x1得

9、1exe,所以3exe2x(ex)23ee2,所以a3ee2. (3)设tex,由(2)知1te,记g(t)t1(1te,a1),则,t(1,)(,)g(t)0g(t)极小值当e时,即ae2时,g(t)在1te上递减,所以g(e)g(t)g(1),即所以f(x)的值域为. 当1e时,即1ae2时,g(t)min= g()21,g(t)max=max g(1),g(e) =max a,1若a,即eae2时,g(t)max= g(1)= a;所以f(x)的值域为; 2若a,即1ae时,g(t)max= g(e) =,所以f(x)的值域为 综上所述,当1ae时,f(x)的值域为;当eae2时,f(x

10、)的值域为;当ae2时,f(x)的值域为 20【解】(1)因为f (x)a,所以kf (1)1a, 又因为f(1)ab,所以切线方程为yab(1a)(x1),因为过点(2,0),所以ab=1a,即2ab1. (2)解法一:当b0时,f(x)lnxax,所以f (x)a.10若a0,则f (x)0,所以f(x)在(,)上递增,所以f(x)f()1,因为函数yf(x)在(,)上没有零点,所以10,即ae;20若a0,由f (x)0,得x.当时,即ae时,f (x)0,f(x)在(,)上递减,所以f(x)f()10,符合题意,所以ae; 当时,即0ae时,若x,f (x)0,f(x)在(,)上递增;

11、若x,f (x)0,f(x)在(,)上递减,所以f(x)在x处取得极大值,即为最大值,要使函数yf(x)在(,)上没有零点,必须满足f()ln1lna10,得a,所以ae.综上所述,实数a的取值范围是ae或a. 解法二:当b0时,f(x)lnxax,由f(x)0得a,设g(x),则g(x).当xe时,g (x)0,所以g(x)在(,e)上递增,当xe时,g (x)0,所以g(x)在(e,)上递减,所以g(x)maxg(e), 又g()e,且当xe时,g(x)0恒成立,所以g(x)在(,)上值域为(e, 要使函数yf(x)在(,)上没有零点,必须满足ae或a,即所求实数a的取值范围是ae或a.

12、(3)不妨设0x1x2,由f(x1)f(x2),得lnx1ax1blnx2ax2b,因为a0,所以. 又因为,f (x)在(0,)上递减,且f ()0,故要证,只要证,只要证,只要证,只要证 (*), 令,记,则,所以h(t)在(1,+)上递减,所以h(t) h(1)=0,所以(*)成立,所以原命题成立. (3)(法二)当a0时,f(x)在(0,)上递增,在(,)上递减. 不妨设0x1x2,因为f(x1)f(x2),所以0x1x2故要证,只要证,只要证只要证x2x1,因为0x1,所以x1,x2又因为f(x)在(,)上递减,所以只要证f (x2)f(x1) 因为f(x1)f(x2),所以只要证f

13、(x1)f(x1)只要证lnx1ax1bln(x1)a(x1)b 只要证ln(x1)lnx12ax120设h(x)= ln(x)lnx2ax2 ,0xh (x)=2a=0所以h(x)在(0,)上递减,所以h(x)h()=lnln+22=0所以ln(x1)lnx12ax120所以所以 21.【解】(1); (2)或 22【解】(1)法1:,法2:; (2)答:分别有360和576种不同的排法. 23【解】(1)小陈同学三次投篮都没有命中的概率为(1)(1)(1);所以小陈同学三次投篮至少命中一次的概率为1. (2)可能的取值为0,1,2,3P(0);P(1)(1)(1)(1)(1)(1)(1);

14、P(2);P(3);故随机变量的概率分布为0123P所以数学期望E()0123 24【解】(1), (2) 当n1时,,等式成立 当n2时,由于, 所以,综上所述,对 nN*,成立 20172018学年第二学期期终考学生素质调研测试高二数学()参考答案一、填空题:本大题共14小题,每小题5分,共70分 1xR,2x23x40;2(或x|x);3;4真;52x2cosx;61;70;8(0,1);9必要不充分;102xy20(或y2x2);112;12(0,+);13;144二、解答题:本大题共6小题,共90分解答时应写出文字说明、证明过程或演算步骤15(本小题满分14分)甲、乙两个同学分别抛掷

15、一枚质地均匀的骰子(1)求他们抛掷的骰子向上的点数之和是4的倍数的概率;(2)求甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的概率【解】(1)记“他们抛掷的骰子向上的点数之和是4的倍数”为事件A,基本事件共有36个,事件A包含9个基本事件,故P(A)=;6分(2)记“甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数”为事件B,基本事件共有36个,事件B包含21个基本事件,故P(B)=12分答 (1)他们抛掷的骰子向上的点数之和是4的倍数的概率为;(2)甲抛掷的骰子向上的点数不大于乙抛掷的骰子向上的点数的概率为14分16(本小题满分14分)已知集合Ax|0kx15,B x|1x2(1)当

16、k1时,求集合A;(2)当k0时,若ABB,求实数k的取值范围【解】(1)当k1时,Ax|0x15x|1x4; 4分(2)因为AB= B,所以BA, 6分由0kx15,得1kx4,当k=0时,A=R,满足BA成立; 8分当k0时,A=, 10分由BA,得, 12分即,故,综上所述: 14分17(本小题满分14分)如图,在圆心角为90,半径为60 cm的扇形铁皮上截取一块矩形材料OABC,其中点O为圆心,点B在圆弧上,点A,C在两半径上,现将此矩形铁皮OABC卷成一个以AB为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长ABx cm,圆柱形铁皮罐的容积为V(x) cm3.(1)求圆

17、柱形铁皮罐的容积V(x)关于x的函数解析式,并指出该函数的定义域;(2)当x为何值时,才使做出的圆柱形铁皮罐的容积V(x)最大?最大容积是多少?(圆柱体积公式:VSh,S为圆柱的底面积,h为圆柱的高)BCOA(第17题)【解】(1)连接OB,在RtOAB中,由AB=x,利用勾股定理可得OA,设圆柱底面半径为r,则2r, 2分即4r3600x,所以V(x)rxx,即铁皮罐的容积为V(x)关于x的函数关系式为V(x),定义域为(0,60). 6分(2)由V (x)0,x(0,60),得x20 8分列表如下:x(0,20)20(20,60)V (x)0V(x)极大值V(20) 12分所以当x20时,

18、V(x)有极大值,也是最大值为.答:当x为20 cm时,做出的圆柱形铁皮罐的容积最大,最大容积是cm3. 14分18(本小题满分16分)已知命题p:函数是R上的奇函数,命题q:函数的定义域和值域都是a,b,其中a1(1)若命题p为真命题,求实数k的值;(2)若“p且q”为假命题,“p或q”为真命题,求实数k的取值范围【解】(1)若命题p为真命题,则f(x)f(x)0, 2分即,化简得对任意的xR成立, 4分所以k1 6分(2)若命题q为真命题,因为在a,b上恒成立,所以g(x)在a,b上是单调增函数,又g(x)的定义域和值域都是a,b,所以 8分所以a,b是方程的两个不相等的实根,且1ab即方

19、程有两个大于1的实根且不相等,10分记h(x)k2x2k(2k1)x1,故解得, 所以k的取值范围为 12分因为“p且q”为假命题,“p或q”为真命题,所以命题p和q中有且仅有一个为真命题, 14分即p真q假,或p假q真 所以或所以实数k的取值范围为 16分19(本小题满分16分)已知函数f(x)exaex1,集合Ax|x2x0(1)当a3时,解不等式f(x)1;(2)若B x | log2f(x)1,且AB,求实数a的取值范围;(3)当a1时,若函数f(x)的定义域为A,求函数f(x)的值域【解】(1)当a3时,由f(x)1得ex3e-x11, 所以e2x2ex30,即(ex3) (ex1)

20、0, 2分所以ex3,故xln3,所以不等式的解集为(ln3,+). 4分(2)由x2x0,得0x1,所以Ax|0x1.因为AB,所以log2f(x)1在0x1上有解, 即 f(x)2在0x1上有解,即exae-x30在0x1上有解, 7分所以a3exe2x在0x1上有解,即a3exe2xmin. 由0x1得1exe,所以3exe2x(ex)23ee2,所以a3ee2. 10分(3)设tex,由(2)知1te,记g(t)t1(1te,a1),则,t(1,)(,)g(t)0g(t)极小值当e时,即ae2时,g(t)在1te上递减,所以g(e)g(t)g(1),即所以f(x)的值域为. 12分当1

21、e时,即1ae2时,g(t)min= g()21,g(t)max=max g(1),g(e) =max a,1若a,即eae2时,g(t)max= g(1)= a;所以f(x)的值域为; 14分2若a,即1ae时,g(t)max= g(e) =,所以f(x)的值域为 综上所述,当1ae时,f(x)的值域为;当eae2时,f(x)的值域为;当ae2时,f(x)的值域为 16分20(本小题满分16分)已知函数f(x)lnxaxb (a,bR)(1)若函数f(x)的图象在x1处的切线过点(2,0),求2ab的值;(2)当b0时,函数yf(x)在上没有零点,求实数a的取值范围;(3)当a0时,存在实数

22、x1,x2(x1x2)使得f(x1)f(x2),求证:f ()0【解】(1)因为f (x)a,所以kf (1)1a, 2分又因为f(1)ab,所以切线方程为yab(1a)(x1),因为过点(2,0),所以ab=1a,即2ab1. 4分(2)解法一:当b0时,f(x)lnxax,所以f (x)a.10若a0,则f (x)0,所以f(x)在(,)上递增,所以f(x)f()1,因为函数yf(x)在(,)上没有零点,所以10,即ae;6分20若a0,由f (x)0,得x.当时,即ae时,f (x)0,f(x)在(,)上递减,所以f(x)f()10,符合题意,所以ae; 8分当时,即0ae时,若x,f

23、(x)0,f(x)在(,)上递增;若x,f (x)0,f(x)在(,)上递减,所以f(x)在x处取得极大值,即为最大值,要使函数yf(x)在(,)上没有零点,必须满足f()ln1lna10,得a,所以ae.综上所述,实数a的取值范围是ae或a. 10分解法二:当b0时,f(x)lnxax,由f(x)0得a,设g(x),则g(x).当xe时,g (x)0,所以g(x)在(,e)上递增,当xe时,g (x)0,所以g(x)在(e,)上递减,所以g(x)maxg(e), 6分又g()e,且当xe时,g(x)0恒成立,所以g(x)在(,)上值域为(e, 8分要使函数yf(x)在(,)上没有零点,必须满

24、足ae或a,即所求实数a的取值范围是ae或a. 10分(3)不妨设0x1x2,由f(x1)f(x2),得lnx1ax1blnx2ax2b,因为a0,所以. 12分又因为,f (x)在(0,)上递减,且f ()0,故要证,只要证,只要证,只要证,只要证 (*), 14分令,记,则,所以h(t)在(1,+)上递减,所以h(t) h(1)=0,所以(*)成立,所以原命题成立. 16分(3)(法二)当a0时, f(x)在(0,)上递增,在(,)上递减. 11分不妨设0x1x2,因为f(x1)f(x2),所以0x1x2故要证,只要证,只要证 只要证x2x1,因为0x1,所以x1,x2又因为f(x)在(,

25、)上递减,所以只要证f (x2)f(x1) 因为f(x1)f(x2),所以只要证f(x1)f(x1)只要证lnx1ax1bln(x1)a(x1)b 13分只要证ln(x1)lnx12ax120设h(x)= ln(x)lnx2ax2 ,0xh (x)=2a=0 所以h(x)在(0,)上递减,所以h(x)h()=lnln+22=0所以ln(x1)lnx12ax120所以所以 16分高二数学参考答案及评分建议21(本小题满分10分)求下列函数的导数:(1);(2)【解】(1); 5分(2)或 10分22(本小题满分10分)2名男生、4名女生排成一排,问:(1)男生甲必须排在男生乙的左边(不一定相邻)

26、的不同排法共有多少种?(2)4名女生不全相邻的不同排法共有多少种?【解】(1)法1:,法2:; 5分(2)答:分别有360和576种不同的排法. 10分23(本小题满分10分)小陈同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前两次投篮是否命中相互之间没有影响第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,否则为(1)求小陈同学三次投篮至少命中一次的概率;(2)记小陈同学三次投篮命中的次数为随机变量,求的概率分布及数学期望【解】(1)小陈同学三次投篮都没有命中的概率为(1)(1)(1);所以小陈同学三次投篮至少命中一次的概率为1. 3分(2)可能的取值为0,1,2,3P(0);P(1)(1)(1)(1)(1)(1)(1);P(2);P(3);故随机变量的概率分布为0123P8分所以数学期望E()0123 10分24(本小题满分10分)已知m,nN*,定义(1)求f4(2),f4(5)的值;(2)证明:【解】(1), 4分(2) 当n1时,,等式成立 6分当n2时,由于, 8分所以,综上所述,对 nN*,成立 10分

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3