1、一、选择题1(2013福州模拟)已知F1,F2是椭圆1的两焦点,过点F2的直线交椭圆于A,B两点在AF1B中,若有两边之和是10,则第三边的长度为()A6B5C4 D3解析:选A.根据椭圆定义,知AF1B的周长为4a16,故所求的第三边的长度为16106.2(2011高考大纲全国卷)已知抛物线C:y24x的焦点为F,直线y2x4与C交于A,B两点,则cosAFB()A. B.C D解析:选D.法一:由得或令B(1,2),A(4,4),又F(1,0),由两点间距离公式得|BF|2,|AF|5,|AB|3.cosAFB.法二:由法一得A(4,4),B(1,2),F(1,0),(3,4),(0,2)
2、,|5,|2.cosAFB.3已知曲线C1的方程为x21(x0,y0),圆C2的方程为(x3)2y21,斜率为k(k0)的直线l与圆C2相切,切点为A,直线l与曲线C1相交于点B,|AB|,则直线AB的斜率为()A. B.C1 D.解析:选A.设B(a,b),则由题意可得,解得.则直线AB的方程为yk(x1),故1,k或k(舍去)4设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A. B.C. D.解析:选D.设双曲线方程为1(a0,b0),如图所示,双曲线的一条渐近线方程为yx,而kBF,()1,整理得b2ac.c2a2ac0,两
3、边同除以a2,得e2e10,解得e或e(舍去),故选D.5已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(12,15),则E的方程为()A.1 B.1C.1 D.1解析:选B.kAB1,直线AB的方程为yx3.由于双曲线的焦点为F(3,0),c3,c29.设双曲线的标准方程为1(a0,b0),把yx3代入双曲线方程,则1.整理,得(b2a2)x26a2x9a2a2b20.设A(x1,y1),B(x2,y2),则x1x22(12),a24a24b2,5a24b2.又a2b29,a24,b25.双曲线E的方程为1.二、填空题6(2011高考江西
4、卷)若椭圆1的焦点在x轴上,过点作圆x2y21的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是_解析:由题意可得切点A(1,0)切点B(m,n)满足,解得B.过切点A,B的直线方程为2xy20.令y0得x1,即c1;令x0得y2,即b2.a2b2c25,椭圆方程为1.答案:17(2013广西梧州高三检测)设点F为抛物线yx2的焦点,与抛物线相切于点P(4,4)的直线l与x轴的交点为Q,则PQF的值是_解析:yx,kPQy|x42,直线PQ的方程为y42(x4)令y0,得x2,点Q(2,0)又焦点F(0,1),kFQ,kPQkFQ1,PQF.答案:8已知F是椭圆C的一
5、个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且2,则C的离心率为_解析:法一:如图,设椭圆C的焦点在x轴上,B(0,b),F(c,0),D(xD,yD),则(c,b),(xDc,yD),2,1,即e2, e.法二:设椭圆C的焦点在x轴上,如图,B(0,b),F(c,0),D(xD,yD),则|BF|a.作DD1y轴于点D1,则由2 ,得,|DD1|OF|c,即xD.由椭圆的第二定义得|FD|e()a.又由|BF|2|FD|,得a2a,整理得,即e2.e.答案:三、解答题9. 已知抛物线C的方程为y24x,其焦点为F,准线为l,过F作直线m交抛物线C于M,N两点求SOMN的最小值解:
6、由题意知F(1,0),l:x1,设m:xay1,M(x1,y1),N(x2,y2)则y24ay40,由根与系数的关系得.SOMN|OF|y1y2|22(a0时取得等号)所以SOMN的最小值为2.10(2012高考重庆卷)如图所示,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且AB1B2是面积为4的直角三角形(1)求该椭圆的离心率和标准方程;(2)过B1作直线交椭圆于P、Q两点,使PB2QB2,求PB2Q的面积解:(1)设所求椭圆的标准方程为1(ab0),右焦点为F2(c,0)因为AB1B2是直角三角形且|AB1|AB2|
7、,故B1AB2为直角,从而|OA|OB2|,得b.结合c2a2b2得4b2a2b2,故a25b2,c24b2,所以离心率e.在RtAB1B2中,OAB1B2,故S|B1B2|OA|OB2|OA|bb2,由题设条件S4得b24,从而a25b220.因此所求椭圆的标准方程为1.(2)由(1)知B1(2,0),B2(2,0)由题意知,直线PQ的倾斜角不为0,故可设直线PQ的方程为xmy2.代入椭圆方程得(m25)y24my160.(*)设P(x1,y1)、Q(x2,y2),则y1,y2是上面方程的两根,因此y1y2,y1y2.又(x12,y1),(x22,y2),所以(x12)(x22)y1y2(m
8、y14)(my24)y1y2(m21)y1y24m(y1y2)1616,由PB2QB2,知0,即16m2640,解得m2.当m2时,方程(*)化为9y28y160,故y1,y2,|y1y2|,PB2Q的面积S|B1B2|y1y2|.当m2时,同理可得(或由对称性可得)PB2Q的面积S,综上所述,PB2Q的面积为.11(探究选做)(2012高考上海卷)在平面直角坐标系xOy中,已知双曲线C1:2x2y21.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点若l与圆x2y21相切,求证:OPOQ;(3)设椭圆C
9、2:4x2y21.若M、N分别是C1、C2上的动点,且OMON,求证:O到直线MN的距离是定值解:(1)双曲线C1:y21,左顶点A,渐近线方程:yx.不妨取过点A与渐近线yx平行的直线方程为y,即yx1.解方程组得所以所求三角形的面积为S|OA|y|.(2)证明:设直线PQ的方程是yxb.因直线PQ与已知圆相切,故1,即b22.由得x22bxb210.设P(x1,y1)、Q(x2,y2),则又y1y2(x1b)(x2b),所以x1x2y1y22x1x2b(x1x2)b22(1b2)2b2b2b220.故OPOQ.(3)证明:当直线ON垂直于x轴时,|ON|1,|OM|,则O到直线MN的距离为.当直线ON不垂直于x轴时,设直线ON的方程为ykx,则直线OM的方程为yx.由得所以|ON|2.同理|OM|2.设O到直线MN的距离为d,因为(|OM|2|ON|2)d2|OM|2|ON|2,所以3,即d.综上,O到直线MN的距离是定值