ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:136.50KB ,
资源ID:621176      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-621176-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《非常考案》2017版高考数学一轮复习(通用版)分层限时跟踪练49第八章 平面解析几何 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《非常考案》2017版高考数学一轮复习(通用版)分层限时跟踪练49第八章 平面解析几何 WORD版含解析.doc

1、分层限时跟踪练(四十九)(限时40分钟)1在平面直角坐标系xOy中,直线l与抛物线y24x相交于不同的A、B两点(1)如果直线l过抛物线的焦点,求的值;(2)如果4,证明直线l必过一定点,并求出该定点【解】(1)由题意知,抛物线焦点为(1,0),设l:xty1,代入抛物线y24x,消去x得y24ty40,设A(x1,y1),B(x2,y2),则y1y24t,y1y24,x1x2y1y2(ty11)(ty21)y1y2t2y1y2t(y1y2)1y1y24t24t2143.(2)设l:xtyb,代入抛物线y24x,消去x得y24ty4b0.设点A(x1,y1),B(x2,y2),则y1y24t,

2、y1y24b,x1x2y1y2(ty1b)(ty2b)y1y2t2y1y2bt(y1y2)b2y1y24bt24bt2b24bb24b.令b24b4,b24b40,b2,直线l过定点(2,0)若4,则直线l必过一定点(2,0)2(2015陕西高考)如图886,椭圆E:1(ab0)经过点A(0,1),且离心率为.图886(1)求椭圆E的方程(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.【解】(1)由题设知,b1,结合a2b2c2,解得a.所以椭圆的方程为y21.(2)证明:由题设知,直线PQ的方程为yk(x1)1(k2),

3、代入y21,得(12k2)x24k(k1)x2k(k2)0.由已知0,设P(x1,y1),Q(x2,y2),x1x20,则x1x2,x1x2.从而直线AP,AQ的斜率之和kAPkAQ2k(2k)2k(2k)2k(2k)2k2(k1)2.3给出双曲线x21.(1)求以A(2,1)为中点的弦所在的直线方程;(2)过点B(1,1)能否作直线m,使得m与双曲线交于两点Q1,Q2,且B是Q1Q2的中点?这样的直线m若存在,求出它的方程;若不存在,说明理由【解】(1)设弦的两端点为P1(x1,y1),P2(x2,y2),则两式相减得到2(x1x2)(x1x2)(y1y2)(y1y2),又x1x24,y1y

4、22,所以直线斜率k4.故求得直线方程为4xy70.(2)假设满足题设条件的直线m存在,按照(1)的解法可得直线m的方程为y2x1.考虑到方程组无解,因此满足题设条件的直线m是不存在的4已知椭圆C:1(ab0)的焦距为4,且过点P(,)(1)求椭圆C的方程;(2)设Q(x0,y0)(x0y00)为椭圆C上一点过点Q作x轴的垂线,垂足为E.取点A(0,2),连结AE.过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG.问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由【解】(1)因为焦距为4,所以a2b24.又因为椭圆C过点P(,),所以1,故a28,b24,从而

5、椭圆C的方程为1.(2)由题意知,E点坐标为(x0,0),设D(xD,0),则(x0,2),(xD,2),再由ADAE知,0,即x0xD80.由于x0y00,故xD.因为点G是点D关于y轴的对称点,所以点G.故直线QG的斜率kQG.又因Q(x0,y0)在椭圆C上,所以x2y8.从而kQG.故直线QG的方程为y.将代入椭圆C的方程,得(x2y)x216x0x6416y0.再将代入,化简得x22x0xx0.解得xx0,yy0,即直线QG与椭圆C一定有唯一的公共点1已知抛物线C:y22px(p0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|

6、FD|.当点A的横坐标为3时,ADF为正三角形(1)求C的方程;(2)若直线l1l,且l1和C有且只有一个公共点E,证明直线AE过定点,并求出定点坐标【解】(1)由题意知F.设D(t,0)(t0),则FD的中点为.因为|FA|FD|,由抛物线的定义知3,解得t3p或t3(舍去)由3,解得p2.所以抛物线C的方程为y24x.(2)证明:由(1)知F(1,0),设A(x0,y0)(x0y00),D(xD,0)(xD0),因为|FA|FD|,则|xD1|x01,由xD0得xDx02,故D(x02,0)故直线AB的斜率kAB.因为直线l1和直线AB平行,设直线l1的方程为yxb,代入抛物线方程得y2y

7、0,由题意0,得b.设E(xE,yE),则yE,xE.当y4时,kAE,可得直线AE的方程为yy0(xx0),由y4x0,整理可得y(x1),直线AE恒过点F(1,0)当y4时,直线AE的方程为x1,过点F(1,0),所以直线AE过定点F(1,0)2已知双曲线C:1(a0,b0)的焦距为3,其中一条渐近线的方程为xy0.以双曲线C的实轴为长轴,虚轴为短轴的椭圆记为E,过原点O的动直线与椭圆E交于A、B两点(1)求椭圆E的方程;(2)若点P为椭圆E的左顶点,2,求|2|2的取值范围;(3)若点P满足|PA|PB|,求证:为定值【解】(1)由双曲线1的焦距为3,得c,a2b2.由题意知,由解得a2

8、3,b2,椭圆E的方程为y21.(2)由(1)知P(,0)设G(x0,y0),由2,得(x0,y0)2(x0,y0)即解得G.设A(x1,y1),则B(x1,y1),|2|22y2y2x2y2x3xx.又x1,x0,3,x,|2|2的取值范围是.(3)证明:由|PA|PB|,知P在线段AB的垂直平分线上,由椭圆的对称性可知A、B关于原点对称若A、B在椭圆的短轴顶点处,则点P在椭圆的长轴顶点处,此时22.若A、B在椭圆的长轴顶点处,则点P在椭圆的短轴顶点处,此时22.当点A、B、P不在椭圆顶点处时,设直线l的方程为ykx(k0),则直线OP的方程为yx,设A(x2,y2),B(x2,y2)由解得

9、x,y.所以|OA|2|OB|2xy,用代换k,得|OP|2.2.综上,为定值2.3已知椭圆C1,抛物线C2的焦点均在y轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于表中:x014y221(1)求C1,C2的标准方程;(2)设斜率不为0的动直线l与C1有且只有一个公共点P,且与C2的准线相交于点Q,试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,请说明理由【解】(1)设C1,C2的标准方程分别为1(ab0),x2py,(0,2)不符合x2py,该点必为椭圆上的点,代入得a2.即椭圆方程为1,若(4,1)在椭圆上,

10、则有1,b2a2(不合题意)即(4,1)在抛物线上,p16,抛物线方程为x216y,验证得在抛物线上,(,2)不在抛物线上,(,2)在椭圆上,b24.故C1,C2的标准方程分别为1,x216y.(2)存在设直线l的方程为xmyn,将其代入1,消去x并化简整理得(12m2)y24mny2n280,l与C1相切,16m2n24(12m2)(2n28)0,n24(12m2),设切点P(x0,y0),则y0,x0my0n.又直线l与C2的准线y4的交点Q(n4m,4),以PQ为直径的圆的方程为(xn4m)(y4)0,化简并整理得x2x(4mn)x(y2)(y2)20,当x0,y2时,等式恒成立,即存在

11、定点M(0,2)符合题意4(2015湖北高考)一种画椭圆的工具如图887(1)所示O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处的铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DNON1,MN3.当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C.以O为原点,AB所在的直线为x轴建立如图887(2)所示的平面直角坐标系图887(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x2y0和l2:x2y0分别交于P,Q两点若直线l总与椭圆C有且只有一个公共点,试探究:OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由【解】(1)因为|OM

12、|MN|NO|314,当M,N在x轴上时,等号成立;同理,|OM|MN|NO|312,当D,O重合,即MNx轴时,等号成立,所以椭圆C的中心为原点O,长半轴长为4,短半轴长为2,其方程为1.(2)当直线l的斜率不存在时,直线l为x4或x4,都有SOPQ448.当直线l的斜率存在时,设直线l:ykxm,由消去y,可得(14k2)x28kmx4m2160.因为直线l总与椭圆C有且只有一个公共点,所以64k2m24(4m216)0,即m216k24.又由可得P;同理可得Q.由原点O到直线PQ的距离为d和|PQ|xPxQ|,可得SOPQ|PQ|d|m|xPxQ|m|.将代入,得SOPQ8.当k2时,SOPQ888;当0k2时,SOPQ88.因为0k2,则014k21,2,所以SOPQ88,当且仅当k0时取等号所以当k0时,SOPQ取最小值为8.综合可知,当直线l与椭圆C在四个顶点处相切时,OPQ的面积取得最小值8.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3