1、第1讲立体几何中的计算与位置关系一、选择题1(2015晋中模拟)已知m,n表示两条不同直线,表示平面下列说法正确的是()A若m,n,则mnB若m,n,则mnC若m,mn,则nD若m,mn,则n解析法一若m,n,则m、n可能平行、相交或异面,A错;若m,n,则mn,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m,mn,则n或n,C错;若m,mn,则n与可能相交,可能平行,也可能n,D错法二如图,在正方体ABCDABCD中,用平面ABCD表示.A项中,若m为AB,n为BC,满足m,n,但m与n是相交直线,故A错B项中,m,n,满足mn,这是线面垂直的性质,故B正确C项中,若m为AA,n
2、为AB,满足m,mn,但n,故C错D项中,若m为AB,n为BC,满足m,mn,但n,故D错答案B2(2015东营模拟)某几何体的三视图如图所示,则该几何体的表面积为()A54 B60C66 D72解析还原为如图所示的直观图,S表SABCSDEFS矩形ACFDS梯形ABEDS梯形CBEF343553(25)4(25)560.答案B3(2015山东卷)在梯形ABCD中,ABC,ADBC,BC2AD2AB2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D2解析如图,由题意,得BC2,ADAB1.绕AD所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥
3、的组合体所求体积V122121.答案C4(2015北京卷)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A2 B4C22 D5解析该三棱锥的直观图如图所示:过D作DEBC,交BC于E,连接AE,则BC2,EC1,AD1,ED2,S表SBCDSACDSABDSABC 2211222.答案C5三棱锥SABC的所有顶点都在球O的表面上,SA平面ABC,ABBC,又SAABBC1,则球O的表面积为()A. B.C3 D12解析如图,因为ABBC,所以AC是ABC所在截面圆的直径,又因为SA平面ABC,所以SAC所在的截面圆是球的大圆,所以SC是球的一条直径由题设SAABBC1,由勾股定理可求得:A
4、C,SC,所以球的半径R,所以球的表面积为43.答案C二、填空题6(2015天津卷)一个几何体的三视图如图所示(单位:m),则该几何体的体积为_m3.解析由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1,圆锥的高为1,圆柱的高为2,所以该几何体的体积V2121122(m3)答案7(2015江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为_解析设新的底面半径为r,由题意得r24r28524228,解得r.答案8如图,正方体ABCDA1B1C1D1的棱长
5、为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1EDF的体积为_解析利用三棱锥的体积公式直接求解VD1EDFVFDD1ESD1DEAB111.另解(特殊点法):让E点和A点重合,点F与点C重合,则VD1EDFSACDD1D111.答案三、解答题9(2015江苏卷)如图,在直三棱柱ABCA1B1C1中,已知ACBC,BCCC1.设AB1的中点为D,B1CBC1E.求证:(1)DE平面AA1C1C;(2)BC1AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DEAC.又因为DE平面AA1C1C,AC平面AA1C1C,所以DE平面AA1C1C.(2)因为棱柱ABCA1B
6、1C1是直三棱柱,所以CC1平面ABC.因为AC平面ABC,所以ACCC1.又因为ACBC,CC1平面BCC1B1,BC平面BCC1B1,BCCC1C,所以AC平面BCC1B1.又因为BC1平面BCC1B1,所以BC1AC.因为BCCC1,所以矩形BCC1B1是正方形,因此BC1B1C.因为AC,B1C平面B1AC,ACB1CC,所以BC1平面B1AC.又因为AB1平面B1AC,所以BC1AB1.10.如图所示,已知AB平面ACD,DE平面ACD,ACD为等边三角形,ADDE2AB,F为CD的中点求证:(1)AF平面BCE;(2)平面BCE平面CDE.证明(1)如图,取CE的中点G,连接FG,
7、BG.F为CD的中点,GFDE且GFDE.AB平面ACD,DE平面ACD,ABDE,GFAB.又ABDE,GFAB.四边形GFAB为平行四边形,则AFBG.AF平面BCE,BG平面BCE,AF平面BCE.(2)ACD为等边三角形,F为CD的中点,AFCD.DE平面ACD,AF平面ACD,DEAF.又CDDED,AF平面CDE.BGAF,BG平面CDE.BG平面BCE,平面BCE平面CDE.11(2015潍坊模拟)如图所示,四边形ABCD为矩形,AD平面ABE,AEEBBC,F为CE上的点,且BF平面ACE.(1)求证:AEBE;(2)设M在线段AB上,且满足AM2MB,试在线段CE上确定一点N,使得MN平面DAE.(1)证明AD平面ABE,ADBC,BC平面ABE,AE平面ABE,AEBC.又BF平面ACE,AE平面ACE,AEBF.BCBFB,AE平面BCE.又BE平面BCE,AEBE.(2)解在ABE中过M点作MGAE交BE于G点,在BEC中过G点作GNBC交EC于N点,连接MN,则由比例关系易得CNCE.MGAE,MG平面ADE,AE平面ADE,MG平面ADE.同理,GN平面ADE.又GNMGG,平面MGN平面ADE.又MN平面MGN,MN平面ADE.N点为线段CE上靠近C点的一个三等分点